分析 先根據(jù)拋物線(xiàn)方程求得焦點(diǎn)坐標(biāo),根據(jù)圓的方程求得圓心坐標(biāo),根據(jù)拋物線(xiàn)的定義可知P到準(zhǔn)線(xiàn)的距離等于點(diǎn)P到焦點(diǎn)的距離,進(jìn)而問(wèn)題轉(zhuǎn)化為求點(diǎn)P到點(diǎn)Q的距離與點(diǎn)P到拋物線(xiàn)的焦點(diǎn)距離之和的最小值,根據(jù)圖象可知當(dāng)P,Q,F(xiàn)三點(diǎn)共線(xiàn)時(shí)P到點(diǎn)Q的距離與點(diǎn)P到拋物線(xiàn)的y軸距離之和的最小,為圓心到焦點(diǎn)F的距離減去圓的半徑減去y軸與準(zhǔn)線(xiàn)的距離.
解答 解:拋物線(xiàn)y2=4x的焦點(diǎn)為F(1,0),圓x2+(y-4)2=1的圓心為C(0,4),
根據(jù)拋物線(xiàn)的定義可知點(diǎn)P到準(zhǔn)線(xiàn)的距離等于點(diǎn)P到焦點(diǎn)的距離,
進(jìn)而推斷出當(dāng)P,Q,F(xiàn)三點(diǎn)共線(xiàn)時(shí)P到點(diǎn)Q的距離與點(diǎn)P到拋物線(xiàn)的y軸距離之和的最小為:
|FC|-r-1=$\sqrt{1+16}$-1-1=$\sqrt{17}$-2,
故答案為:$\sqrt{17}$-2.
點(diǎn)評(píng) 本題主要考查了拋物線(xiàn)的定義的應(yīng)用.考查了學(xué)生轉(zhuǎn)化和化歸,數(shù)形結(jié)合等數(shù)學(xué)思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 都大于3 | B. | 至多有一個(gè)不大于3 | ||
C. | 都小于3 | D. | 至少有一個(gè)不小于3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6.6 | B. | 6 | C. | 66 | D. | 60 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 48 | B. | 40 | C. | 32 | D. | 24 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com