【題目】選修41:幾何證明選講

如圖,已知AP是O的切線,P為切點(diǎn),AC是O的割線,與O交于B、C兩點(diǎn),圓心O在PAC的內(nèi)部,點(diǎn)M是BC的中點(diǎn).

1證明:A、P、O、M四點(diǎn)共圓;

2OAM+APM的大小

【答案】1詳見解析 2 90°

【解析】

試題分析:1證明四點(diǎn)共圓,一般利用對(duì)角互補(bǔ)進(jìn)行證明:根據(jù)相切及垂徑定理得OPAP及OMBC,從而得OPA+OMA=180°. 2根據(jù)四點(diǎn)共圓得同弦所對(duì)角相等:OAM=OPM,因此

OPM+APM=90°,

試題解析:1證明 連接OP,OM,因?yàn)锳P與O相切于點(diǎn)P,所以O(shè)PAP.

因?yàn)镸是O的弦BC的中點(diǎn),所以O(shè)MBC,

于是OPA+OMA=180°.

由圓心O在PAC的內(nèi)部,可知四邊形APOM的對(duì)角互補(bǔ),所以A、P、O、M四點(diǎn)共圓.

2 1得A、P、O、M四點(diǎn)共圓,

所以OAM=OPM,

1得OPAP,因?yàn)閳A心O在PAC的內(nèi)部,

所以OPM+APM=90°

所以OAM+APM=90°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題正確的是

A.若兩條直線和同一個(gè)平面所成的角相等,則這兩條直線平行

B.若一個(gè)平面內(nèi)有三個(gè)點(diǎn)到另一個(gè)平面的距離相等,則這兩個(gè)平面平行

C. 若一條直線平行于兩個(gè)相交平面,則這條直線與這兩個(gè)平面的交線平行

D.若兩個(gè)平面都垂直于第三個(gè)平面,則這個(gè)兩個(gè)平面平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一人連續(xù)投擲硬幣兩次,事件至少有一次為正面的互斥事件是( )

A.至多有一次為正面B.兩次均為正面

C.只有一次為正面D.兩次均為反面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知坐標(biāo)平面上點(diǎn)與兩個(gè)定點(diǎn) 的距離之比等于.

(1)求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么圖形;

(2)記(1)中的軌跡為,過(guò)點(diǎn)的直線所截得的線段的長(zhǎng)為,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各種情況下,向量終點(diǎn)構(gòu)成什么圖形?

(1)把所有單位向量的起點(diǎn)平移到同一點(diǎn);

(2)把平行于某一直線的所有單位向量的起點(diǎn)平移到同一點(diǎn);

(3)把平行于某一直線的一切向量平移到同一起點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線 恒過(guò)定點(diǎn),圓經(jīng)過(guò)點(diǎn)和點(diǎn),且圓心在直線上.

(1)求定點(diǎn)的坐標(biāo);

(2)求圓的方程;

(3)已知點(diǎn)為圓直徑的一個(gè)端點(diǎn),若另一個(gè)端點(diǎn)為點(diǎn),問(wèn):在軸上是否存在一點(diǎn),使得為直角三角形,若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知c0,設(shè)命題p:函數(shù)為減函數(shù).命題q:當(dāng)時(shí),函數(shù)fx)=x恒成立.如果“p∨q”為真命題,“p∧q”為假命題,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)時(shí),解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是,并且經(jīng)過(guò)點(diǎn).

(1)求橢圓的方程;

(2)若直線與圓相切,并與橢圓交于不同的兩點(diǎn)、.當(dāng),且滿足時(shí),求面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案