【題目】在中,角A,B,C的對(duì)邊分別為a,b,c,R表示的外接圓半徑.
(Ⅰ)如圖,在以O圓心、半徑為2的O中,BC和BA是O的弦,其中,求弦AB的長(zhǎng);
(Ⅱ)在中,若是鈍角,求證:;
(Ⅲ)給定三個(gè)正實(shí)數(shù)a、b、R,其中,問(wèn):a、b、R滿足怎樣的關(guān)系時(shí),以a、b為邊長(zhǎng),R為外接圓半徑的不存在、存在一個(gè)或存在兩個(gè)(全等的三角形算作同一個(gè))?在存在的情況下,用a、b、R表示c.
【答案】(Ⅰ);(Ⅱ)見(jiàn)解析;(Ⅲ)見(jiàn)解析.
【解析】
(Ⅰ)根據(jù)正弦定理,即可求得AB的長(zhǎng)度。
(Ⅱ)由余弦定理,結(jié)合角C為鈍角,即可得到,再由正弦定理即可得到。
(Ⅲ) 對(duì)a進(jìn)行分類(lèi)討論,在不同情況下結(jié)合正弦定理與余弦定理確定a、b、c的關(guān)系,進(jìn)而判斷三角形的個(gè)數(shù)。
(Ⅰ)解法一:連接OB,OC,則,所以,所以.在中,,由正弦定理得,
解得
解法二:的外接圓半徑為2,在中,,
∴.
(Ⅱ)解法一:因?yàn)?/span>是鈍角,所以,即,又因?yàn)?/span>,所以,又因?yàn)?/span>,所以所以,則
解法二:由正弦定理得由于是鈍角,都是銳角,得
,
∵,∴,即.
(Ⅲ)①當(dāng)或時(shí),所求的不存在.
②當(dāng)且時(shí),,所求的只存在一個(gè),且.
③當(dāng)且時(shí),,且A、B都是銳角,由,
A、B唯一確定.因此,所求的只存在一個(gè),且.
④時(shí),總是銳角,可以是鈍角也可以是銳角,因此,所求的存在兩個(gè).由,得
當(dāng)時(shí),,
當(dāng)時(shí),,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在定義域內(nèi)為增函數(shù),求實(shí)數(shù)的取值范圍;
(2)在(1)的條件下,若, , ,求的極小值;
(3)設(shè), .若函數(shù)存在兩個(gè)零點(diǎn),且滿足,問(wèn):函數(shù)在處的切線能否平行于軸?若能,求出該切線方程,若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次趣味校園運(yùn)動(dòng)會(huì)的頒獎(jiǎng)儀式上,高一、高二、高三代表隊(duì)人數(shù)分別為120人、120人、n人.為了活躍氣氛,大會(huì)組委會(huì)在頒獎(jiǎng)過(guò)程中穿插抽獎(jiǎng)活動(dòng),并用分層抽樣的方法從三個(gè)代表隊(duì)中共抽取20人在前排就座,其中高二代表隊(duì)有6人.
(1)求n的值;
(2)把在前排就座的高二代表隊(duì)6人分別記為a,b,c,d,e,f,現(xiàn)隨機(jī)從中抽取2人上臺(tái)抽獎(jiǎng).求a和b至少有一人上臺(tái)抽獎(jiǎng)的概率;
(3)抽獎(jiǎng)活動(dòng)的規(guī)則是:代表通過(guò)操作按鍵使電腦自動(dòng)產(chǎn)生兩個(gè)[0,1]之間的均勻隨機(jī)數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎(jiǎng)”,則該代表中獎(jiǎng);若電腦顯示“謝謝”,則不中獎(jiǎng),求該代表中獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在R上的奇函數(shù),當(dāng)時(shí),.
(1)求的值;
(2)求的解析式;
(3)解關(guān)于的不等式,結(jié)果用集合或區(qū)間表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)滿足,且當(dāng)時(shí),,對(duì)任意R,均有.
(1)求證:;
(2)求證:對(duì)任意R,恒有;
(3)求證:是R上的增函數(shù);
(4)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)的定義域是{x|x≠0},對(duì)定義域內(nèi)的任意,都有f(·)=f()+f(),且當(dāng)x>1時(shí),f(x)>0,f(2)=1.
(1)證明:(x)是偶函數(shù);
(2)證明:(x)在(0,+∞)上是增函數(shù);
(3)解不等式(2-1)<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中是實(shí)數(shù).
(l)若 ,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若為函數(shù)圖像上一點(diǎn),且直線與相切于點(diǎn),其中為坐標(biāo)原點(diǎn),求的值;
(3) 設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為,若在定義域內(nèi)恒成立,則稱函數(shù)具有某種性質(zhì),簡(jiǎn)稱“函數(shù)”.當(dāng)時(shí),試問(wèn)函數(shù)是否為“函數(shù)”?若是,請(qǐng)求出此時(shí)切點(diǎn)的橫坐標(biāo);若不是,清說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與拋物線相交于不同的兩點(diǎn).
(1)如果直線過(guò)拋物線的焦點(diǎn),求的值;
(2)如果 ,證明:直線必過(guò)一定點(diǎn),并求出該定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=lnx﹣ ax2﹣bx,若x=1是f(x)的極大值點(diǎn),則a的取值范圍為( )
A.(﹣1,0)
B.(﹣1,+∞)
C.(0,+∞)
D.(﹣∞,﹣1)∪(0,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com