【題目】定義在R上的函數(shù)滿足,且當(dāng)時(shí),,對(duì)任意R,均有

(1)求證:;

(2)求證:對(duì)任意R,恒有;

(3)求證:是R上的增函數(shù);

(4)若,求的取值范圍.

【答案】(1)見(jiàn)解析; (2)見(jiàn)解析; (3)見(jiàn)解析; (4) .

【解析】

(1)利用賦值法,令ab=0,求解f (0)的值即可;

(2)分類討論x < 0兩種情況證明題中的不等式即可;

(3)由函數(shù)的性質(zhì)可證得當(dāng)時(shí),f (x2) > f (x1),f(x)R上的增函數(shù).

(4)由題意結(jié)合函數(shù)的單調(diào)性和函數(shù)在特殊點(diǎn)的函數(shù)值可得x的取值范圍是(0,3).

(1)證明:令ab=0,得f (0)=f 2 (0),又因?yàn)?/span>f (0) ≠ 0,所以f (0)=1.

(2)當(dāng)x < 0時(shí),-x >0,

所以f (0) =f (x) f (-x) =1,即,

又因?yàn)?/span>時(shí),,所以對(duì)任意xR,恒有f (x) >0.

(3)證明:設(shè),則,所以f (x2)=f [(x2x1)+x1]=f (x2x1) f (x1).

因?yàn)?/span>x2x1>0,所以f (x2x1)>1,又f (x1) > 0,

f (x2x1) f (x1) > f (x1),即f (x2) > f (x1),所以f(x)R上的增函數(shù).

(4)由f (xf (2xx2) >1, f (0)=1f (3xx2) > f (0),

又由f (x) 為增函數(shù),所以3xx2 > 0 0 < x < 3.x的取值范圍是(0,3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB是⊙O的直徑,直線AF交⊙O于F(不與B重合),直線EC與⊙O相切于C,交AB于E,連接AC,且∠OAC=∠CAF,求證:

(1)AF⊥EC;
(2)若AE=5,AF=2,求AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切. 、是橢圓的右頂點(diǎn)與上頂點(diǎn),直線與橢圓相交于、兩點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)當(dāng)四邊形面積取最大值時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ex(ax2﹣x﹣1)(a∈R).
(1)若函數(shù)f(x)在R上單調(diào)遞減,求a的取值范圍
(2)當(dāng)a>0時(shí),求f(|sinx|)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(0,-2),橢圓E (a>b>0)的離心率為F是橢圓E的右焦點(diǎn),直線AF的斜率為O為坐標(biāo)原點(diǎn).

(1)E的方程;

(2)設(shè)過(guò)點(diǎn)A的動(dòng)直線lE相交于PQ兩點(diǎn).當(dāng)OPQ的面積最大時(shí),求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,角A,B,C的對(duì)邊分別為a,b,c,R表示的外接圓半徑.

(Ⅰ)如圖,在以O圓心、半徑為2O中,BCBAO的弦,其中,求弦AB的長(zhǎng);

(Ⅱ)中,若是鈍角,求證:;

(Ⅲ)給定三個(gè)正實(shí)數(shù)a、b、R,其中,問(wèn):a、b、R滿足怎樣的關(guān)系時(shí),以a、b為邊長(zhǎng),R為外接圓半徑的不存在、存在一個(gè)或存在兩個(gè)(全等的三角形算作同一個(gè))?在存在的情況下,用a、b、R表示c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)的和為Sn , 已知a1=1, =12.
(1)求{an}的通項(xiàng)公式an;
(2)bn= ,bn的前n項(xiàng)和Tn , 求證;Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的圖像可以由y=cos2x的圖像先縱坐標(biāo)不變橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,再橫坐標(biāo)不變縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,最后向右平移個(gè)單位而得到.

⑴求f(x)的解析式與最小正周期

⑵求f(x)在x∈(0,π)上的值域與單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=loga (其中a>0,且a≠1).

(1)求函數(shù)f(x)的定義域;

(2)判斷函數(shù)f(x)的奇偶性并給出證明;

(3)若x時(shí),函數(shù)f(x)的值域是[0,1],求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案