【題目】已知是定義在R上的奇函數(shù),當(dāng)時(shí),.

(1)的值;

(2)的解析式;

(3)解關(guān)于的不等式,結(jié)果用集合或區(qū)間表示.

【答案】10

2

3當(dāng)a>1時(shí),不等式的解集為(1loga2,1loga5);當(dāng)0<a<1時(shí),不等式的解集為R.

【解析】

試題分析:解 (1)f(x)是奇函數(shù),∴f(2)=-f(2),即f(2)f(2)0.

(2)當(dāng)x<0時(shí),-x>0,∴f(x)ax1.

f(x)是奇函數(shù),有f(x)=-f(x),∴f(x)=-ax1(x<0)

∴所求的解析式為.

(3)不等式等價(jià)于,

.

當(dāng)a>1時(shí),有,注意此時(shí)loga2>0loga5>0,

可得此時(shí)不等式的解集為(1loga2,1loga5)

同理可得,當(dāng)0<a<1時(shí),不等式的解集為R.

綜上所述,當(dāng)a>1時(shí),不等式的解集為(1loga2,1loga5);當(dāng)0<a<1時(shí),不等式的解集為R.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 +y2=1,A,B,C,D為橢圓上四個(gè)動點(diǎn),且AC,BD相交于原點(diǎn)O,設(shè)A(x1 , y1),B(x2 , y2)滿足 =
(1)求證: + = ;
(2)kAB+kBC的值是否為定值,若是,請求出此定值,并求出四邊形ABCD面積的最大值,否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)給出下列四個(gè)命題:

①c = 0時(shí),是奇函數(shù);時(shí),方程只有一個(gè)實(shí)根;

的圖象關(guān)于點(diǎn)(0 , c)對稱; ④方程至多3個(gè)實(shí)根.

其中正確的命題個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在海岸A處,發(fā)現(xiàn)南偏東45°方向距A(2-2)海里的B處有一艘走私船,在A處正北方向,距A海里的C處的緝私船立即奉命以10海里/時(shí)的速度追截走私船.

(1)剛發(fā)現(xiàn)走私船時(shí),求兩船的距離;

(2)若走私船正以10海里/時(shí)的速度從B處向南偏東75°方向逃竄,問緝私船沿什么方向能最快追上走私船?并求出所需要的時(shí)間(精確到分鐘,參考數(shù)據(jù):≈1.4,≈2.5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ex(ax2﹣x﹣1)(a∈R).
(1)若函數(shù)f(x)在R上單調(diào)遞減,求a的取值范圍
(2)當(dāng)a>0時(shí),求f(|sinx|)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中, 平面, , 的中點(diǎn).

(1)求四棱錐的體積;

(2)求證: ;

(3)判斷線段上是否存在一點(diǎn) (與點(diǎn)不重合),使得四點(diǎn)共面? (結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角A,B,C的對邊分別為a,b,c,R表示的外接圓半徑.

(Ⅰ)如圖,在以O圓心、半徑為2O中,BCBAO的弦,其中,求弦AB的長;

(Ⅱ)中,若是鈍角,求證:;

(Ⅲ)給定三個(gè)正實(shí)數(shù)a、b、R,其中,問:a、b、R滿足怎樣的關(guān)系時(shí),以a、b為邊長,R為外接圓半徑的不存在、存在一個(gè)或存在兩個(gè)(全等的三角形算作同一個(gè))?在存在的情況下,用a、b、R表示c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求使下列函數(shù)取得最大值、最小值的自變量x的集合,并分別寫出最大值、最小值:

(1)y=3-2sin x;

(2)y=sin.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若f(x)是定義在(0,+∞)上的增函數(shù),且對一切x,y>0,滿足

(1)求f(1)的值;

(2)若f(6)=1,解不等式f(x+3)-f()<2.

查看答案和解析>>

同步練習(xí)冊答案