分析 不等式$\frac{lnx}{x}$-x+c≤0對(duì)?x∈(0,+∞)恒成立,轉(zhuǎn)化求解函數(shù)的最值,由此能求出實(shí)數(shù)a的取值范圍.
解答 解:∵不等式$\frac{lnx}{x}$-x+c≤0對(duì)?x∈(0,+∞)恒成立,
又當(dāng)x>0時(shí),c≤x-$\frac{lnx}{x}$,令g(x)=x-$\frac{lnx}{x}$,
則g′(x)=1-$\frac{1-lnx}{{x}^{2}}$,令1-$\frac{1-lnx}{{x}^{2}}$=0,解得x=1,x∈(0,1),函數(shù)是減函數(shù),x∈(1,+∞)函數(shù)是增函數(shù),
x=1時(shí),函數(shù)取得最小值:1.
∴實(shí)數(shù)c的取值范圍是(-∞,1].
故答案為:(-∞,1].
點(diǎn)評(píng) 本題考查實(shí)數(shù)的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意均值不等式的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $2\sqrt{3}-\frac{4π}{3}$ | B. | $2\sqrt{3}-\frac{2π}{3}$ | C. | $2\sqrt{3}+\frac{4π}{3}$ | D. | $2\sqrt{3}+\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若a>b,則ac2>bc2 | B. | 若$\frac{a}{c}$>$\frac{c}$,則a>b | ||
C. | 若a3>b3且ab<0,則$\frac{1}{a}$>$\frac{1}$ | D. | 若a2>b2且ab>0,則$\frac{1}{a}$>$\frac{1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{9}{2}$ | B. | $\frac{15}{2}$ | C. | $-\frac{3}{10}$ | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 單位向量都相等 | B. | 對(duì)于任意$\overrightarrow{a}$,$\overrightarrow$,必有|$\overrightarrow{a}$+$\overrightarrow$|≤|$\overrightarrow{a}$|+|$\overrightarrow$| | ||
C. | 若$\overrightarrow{a}$∥$\overrightarrow$,則一定存在實(shí)數(shù)λ,使$\overrightarrow{a}$=λ$\overrightarrow$ | D. | 若$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$=0或$\overrightarrow$=0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com