【題目】已知被直線, 分成面積相等的四個部分,且截軸所得線段的長為2. 

(1)求的方程;

(2)若存在過點的直線與相交于 兩點,且點恰好是線段的中點,求實數(shù)的取值范圍.

【答案】(1) (2)

【解析】試題分析:1被直線 分成面積相等的四個部分說明圓心在直線的交點,再根據(jù)截得x軸線段長求出半徑即可;2根據(jù)平面幾何知識知,“點是線段的中點”等價于“圓上存在一點使得的長等于的直徑”,轉(zhuǎn)化為,即,從而求解.

試題解析:

(1)設(shè)的方程為,

因為被直線分成面積相等的四部分,

所以圓心一定是兩直線的交點,

易得交點為,所以.

x軸所得線段的長為2,所以.

所以的方程為.

(2)法一:如圖, 的圓心,半徑,

過點N的直徑,連結(jié).

不重合時,

又點是線段的中點;

重合時,上述結(jié)論仍成立.

因此,“點是線段的中點”等價于“圓上存在一點使得的長等于的直徑”.

由圖可知,即,即.

顯然,所以只需,即,解得.

所以實數(shù)的取值范圍是.

法二:如圖, 的圓心,半徑,連結(jié),

于點,并設(shè).

由題意得,

所以

又因為,所以

代入整理可得,

因為,所以,,解得.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)雙曲線的左焦點為,點為雙曲線右支上的一點,且與圓相切于點為線段的中點, 為坐標原點,則__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有紅球3個、白球2個、黑球1個,從中任取2個,則互斥而不對立的兩個事件是( )

A. 至少有一個白球;至少有一個紅球 B. 至少有一個白球;紅、黑球各一個

C. 恰有一個白球;一個白球一個黑球 D. 至少有一個白球;都是白球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱臺ABCD﹣A1B1C1D1中,底面ABCD是平行四邊形,DD1⊥平面ABCD,AB=2AD,AD=A1B1BAD=60°

證明:CC1∥平面A1BD;

求直線CC1與平面ADD1A1所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,圓,點是圓上一動點, 的垂直平分線與交于點.

1)求點的軌跡方程;

2)設(shè)點的軌跡為曲線,過點且斜率不為0的直線交于兩點,點關(guān)于軸的對稱點為,證明直線過定點,并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正三棱柱的底面邊長為2, 是側(cè)棱的中點.

1證明:平面平面;

2若平面與平面所成銳角的大小為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車給市民出行帶來了諸多便利,某公司購買了一批單車投放到某地給市民使用.據(jù)市場分析,每輛單車的營運累計收入 (單位:元)與營運天數(shù)滿足.

(1)要使營運累計收入高于800元,求營運天數(shù)的取值范圍;

(2)每輛單車營運多少天時,才能使每天的平均營運收入最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)從某校高一年級隨機抽取名學(xué)生,獲得了他們?nèi)掌骄邥r間(單位:小時)的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表:

組號

分組

頻數(shù)

頻率

Ⅰ)求的值.

Ⅱ)若,補全表中數(shù)據(jù),并繪制頻率分布直方圖.

Ⅲ)假設(shè)同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,若上述數(shù)據(jù)的平均值為,求,的值,并由此估計該校高一學(xué)生的日平均睡眠時間不少于小時的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,等腰的底邊,高,點是線段上異于點的動點,點邊上,且,現(xiàn)沿將△折起到△的位置,使,記, 表示四棱錐的體積.

(1)的表達式;(2)為何值時, 取得最大,并求最大值。

查看答案和解析>>

同步練習冊答案