【題目】某電視臺(tái)舉行一個(gè)比賽類型的娛樂節(jié)目, 兩隊(duì)各有六名選手參賽,將他們首輪的比賽成績作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示,為了增加節(jié)目的趣味性,主持人故意將隊(duì)第六位選手的成績沒有給出,并且告知大家隊(duì)的平均分比隊(duì)的平均分多4分,同時(shí)規(guī)定如果某位選手的成績不少于21分,則獲得“晉級”.
(1)根據(jù)莖葉圖中的數(shù)據(jù),求出隊(duì)第六位選手的成績;
(2)主持人從隊(duì)所有選手成績中隨機(jī)抽2個(gè),求至少有一個(gè)為“晉級”的概率;
(3)主持人從兩隊(duì)所有選手成績分別隨機(jī)抽取2個(gè),記抽取到“晉級”選手的總?cè)藬?shù)為,求的分布列及數(shù)學(xué)期望.
【答案】(1)20(2)(3)的分布列見解析,數(shù)學(xué)期望為2
【解析】試題分析:(1)先求隊(duì)選手的平均分22,再根據(jù)隊(duì)選手的平均分為18 求隊(duì)第6位選手的成績(2)從隊(duì)所有選手成績中隨機(jī)抽取2個(gè),共有種方法,其中都不“晉級” 有種方法,所以由對立事件概率得(3)先確定隨機(jī)變量取法:0,1,2,3,4,再分別求對應(yīng)事件概率,列表得分布列,根據(jù)公式求數(shù)學(xué)期望
試題解析:(1)隊(duì)選手的平均分為,
設(shè)隊(duì)第6位選手的成績?yōu)?/span>,
則,得
(2)隊(duì)中成績不少于21分的有2個(gè),從中抽取2個(gè)至少有一個(gè)為“晉級”的對立事件為兩人都沒有“晉級”,則概率
(3)的可能取值有0,1,2,3,4,
∴的分布列為
0 | 1 | 2 | 3 | 4 | |
∴
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時(shí),記,已知有三個(gè)極值點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量a=(cosx,sinx),b=(-cosx,cosx),c=(-1,0).
(1)若x=,求向量a,c的夾角;
(2)當(dāng)x∈時(shí),求函數(shù)f(x)=2a·b+1的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了制定合理的節(jié)水方案,對居民用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5), [0.5,1),……[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(I)求直方圖中的a值;
(II)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù).說明理由;
(Ⅲ)估計(jì)居民月均用水量的中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】市場上有一種新型的強(qiáng)力洗衣粉,特點(diǎn)是去污速度快,已知每投放(且)個(gè)單位的洗衣粉液在一定量水的洗衣機(jī)中,它在水中釋放的濃度(克/升)隨著時(shí)間(分鐘)變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時(shí)刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時(shí)刻所釋放的濃度之和,根據(jù)經(jīng)驗(yàn),當(dāng)水中洗衣液的濃度不低于4(克/升)時(shí),它才能起有效去污的作用.
(1)若只投放一次4個(gè)單位的洗衣液,則有效去污時(shí)間可能達(dá)幾分鐘?
(2)若先投放2個(gè)單位的洗衣液,6分鐘后投放個(gè)單位的洗衣液,要使接下來的4分鐘中能夠持續(xù)有效去污,試求的最小值(精確到0.1,參考數(shù)據(jù): 取).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從數(shù)列中抽出一項(xiàng),依原來的順序組成的新叫數(shù)列的一個(gè)子列.
(1)寫出數(shù)列的一個(gè)是等比數(shù)列的子列;
(2)若是無窮等比數(shù)列,首項(xiàng),公比且,則數(shù)列是否存在一個(gè)子列,為無窮等差數(shù)列?若存在,寫出該子列的通項(xiàng)公式;若不存在,證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程式(是參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且取相同的長度單位建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求直線的普通方程與圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線交于、兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)圖象在點(diǎn)處的切線方程為,求的值;
(Ⅱ)求函數(shù)的極值;
(Ⅲ)若,,且對任意的,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com