設(shè)點A(,0),B(,0),直線AM、BM相交于點M,且它們的斜率之積為.
(Ⅰ)求動點M的軌跡C的方程;
(Ⅱ)若直線過點F(1,0)且繞F旋轉(zhuǎn),與圓相交于P、Q兩點,與軌跡C相交于R、S兩點,若|PQ|求△的面積的最大值和最小值(F′為軌跡C的左焦點).
(Ⅰ);(Ⅱ),

試題分析:(Ⅰ)根據(jù)橢圓的定義、幾何性質(zhì)可求;(Ⅱ)直線與橢圓相交,聯(lián)立消元,設(shè)點代入化簡,利用基本不等式求最值.
試題解析:(Ⅰ)設(shè),則
化簡  軌跡的方程為
(Ⅱ)設(shè),的距離
,將代入軌跡方程并整理得:
設(shè),則,


設(shè),則上遞增,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標系中,已知點,,為動點,且直線與直線的斜率之積為.
(1)求動點的軌跡的方程;
(2)設(shè)過點的直線與曲線相交于不同的兩點,.若點軸上,且,求點的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切,直線與橢圓C相交于A、B兩點.
(1)求橢圓C的方程;(2)求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)、是曲線上的點,,則必有 (  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

與橢圓共焦點且過點P(2,1)的雙曲線方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線 C
(Ⅰ)求C的方程;
(Ⅱ)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點,當圓P的半徑最長時,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的一個焦點坐標為,則其離心率等于              (  )
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的長軸在軸上,且焦距為4,則等于(  )
A.4B.5C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在給定橢圓中,過焦點且垂直于長軸的弦長為,焦點到相應(yīng)準線的距離為1,則該橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案