已知銳角α與銳角β的終邊上分別有一點(diǎn)(3,4),(
2
5
5
,
5
5
).
(Ⅰ)求sinα,cosβ;
(Ⅱ)求tan(α+3π),cos(β-
π
2
)的值.
考點(diǎn):任意角的三角函數(shù)的定義,運(yùn)用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:(Ⅰ)直接利用任意角的三角函數(shù)的定義求sinα,cosβ;
(Ⅱ)利用誘導(dǎo)公式化簡tan(α+3π),cos(β-
π
2
),通過任意角的三角函數(shù)的定義求解即可.
解答: 解:(Ⅰ)銳角α終邊上一點(diǎn)(3,4),所以r=5,sinα=
y
r
=
4
5

銳角β的終邊上一點(diǎn)(
2
5
5
,
5
5
).R=
(
2
5
5
)2+(
5
5
)2
=1.
∴cosβ=
2
5
5

(Ⅱ)tan(α+3π)=tanα=
y
x
=
4
3
,
cos(β-
π
2
)=sinβ=
5
5
點(diǎn)評:本題考查任意角的三角函數(shù)的定義,誘導(dǎo)公式的應(yīng)用,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(x)=-f(-x),且當(dāng)x≥0時(shí),f(x)=x2+2x.
(Ⅰ)求函數(shù)f(x)在(-∞,0)上的解析式;
(Ⅱ)求滿足f(2-x2)<f(x)的實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A(1,-3),
a
=(3,4),
AB
=2
a
,則點(diǎn)B坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若c=2ab=4,cosB=
1
4
.則邊c的長度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax-1
ax+1
(a>1),求:
(1)判斷函數(shù)的奇偶性;
(2)證明f(x)是R上的增函數(shù);
(3)求該函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax
x2-1
的定義域?yàn)閇-
1
2
,
1
2
],(a≠0)
(1)判斷f(x)的奇偶性;
(2)討論f(x)的單調(diào)性;
(3)求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=
3
3
x+5的傾斜角是( 。
A、30°B、120°
C、60°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z在復(fù)平面內(nèi)的對應(yīng)點(diǎn)為(-1,1),
.
z
是z的共軛復(fù)數(shù),則
2
.
z
+|z|=( 。
A、
2
+i
B、-
2
i
C、
2
-i
D、
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AB⊥側(cè)面BB1C1C,已BC=1,∠BCC1=
π
3
.CC1=2,AB=
2
.求 證:(1)C1B⊥平面ABC;
(2)試在棱CC1(不包含端點(diǎn)C、C1)上確定一點(diǎn)E的位置,使得EA⊥EB1;
(3)在(2)的條件下,求二面角A-EB1-A1的平面角的正切值.

查看答案和解析>>

同步練習(xí)冊答案