從1,2,3,…,16中任取四個(gè)不同的數(shù),求其中至少有兩個(gè)是相鄰數(shù)的概率.
考點(diǎn):古典概型及其概率計(jì)算公式
專題:概率與統(tǒng)計(jì)
分析:先求出四個(gè)不同的數(shù)其中沒有相鄰數(shù)的概率,再用1減去此概率,即得所求.
解答: 解:16個(gè)數(shù)中任取4個(gè)數(shù)共有
C
4
16
種取法,先考慮4個(gè)數(shù)都不相鄰的情況,
則題目等價(jià)于從排成一排的16個(gè)不同小球中取4個(gè),且每?jī)蓚(gè)球之間至少有一個(gè)球,
為了解決這題,改變順序:先從中抽掉3個(gè)小球,從剩下的球中任意取4個(gè)球,然后再把事先抽走的3個(gè)球依次插入取出的4個(gè)球之間,則可保證4個(gè)球都不相鄰,因此,此問(wèn)題等價(jià)于從13個(gè)數(shù)中任取4個(gè),即四個(gè)不同的數(shù)沒有相鄰的情況為
C
4
13
,
故四個(gè)不同的數(shù)其中沒有相鄰數(shù)的概率
C
4
13
C
4
16
,
故其中至少有兩個(gè)是相鄰數(shù)的概率為1-
C
4
13
C
4
16
=1-
11
28
=
17
28
點(diǎn)評(píng):本題主要考查相互獨(dú)立事件的概率乘法公式,所求的事件與它的對(duì)立事件概率間的關(guān)系,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線y=2x+1關(guān)于直線y=2x+3對(duì)稱的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明等式(1-tan4A)cos2A+tan2A=1成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某中學(xué)某班對(duì)學(xué)生每天數(shù)學(xué)作業(yè)完成時(shí)間(分鐘)進(jìn)行調(diào)查,將所得數(shù)據(jù)調(diào)整后的頻率分布表和頻率分布直方圖如圖.
(1)補(bǔ)全頻率分布表和頻率分布直方圖;
(2)為了分析完成作業(yè)時(shí)間與聽課認(rèn)真程度等方面的關(guān)系,需要從這50人種利用分層抽樣的方法抽取10人作進(jìn)一步分析,則應(yīng)從完成作業(yè)時(shí)間再[40,45)內(nèi)的學(xué)生中抽取多少人?
(3)完成作業(yè)時(shí)間再[25,30)內(nèi)的學(xué)生中有3名男生和若干名女生,現(xiàn)從中任意抽取兩名同學(xué),求這兩名同學(xué)恰好都是男生的概率是多少?
完成作業(yè)時(shí)間頻率分布表
分組頻數(shù)頻率
[25,30)0.1
[30,35)10
[35,40)150.3
[40,45)150.3
[45,50]50.1
合計(jì)501

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某高校在2014年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如下表所示.
組號(hào)分組頻數(shù)頻率
第1組[160,165)50.050
第2組[165,170)n0.350
第3組[170,175)30p
第4組[175,180)200.200
第5組[180,185]100.100
合計(jì)1001.000
(Ⅰ)求頻率分布表中n,p的值,并補(bǔ)充完整相應(yīng)的頻率分布直方圖;
(Ⅱ)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第3、4、5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,則第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(Ⅲ)在(Ⅱ)的前提下,學(xué)校決定從6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至少有1名學(xué)生被甲考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某射手射擊1次,擊中目標(biāo)的概率為
2
3
.已知此人連續(xù)射擊4次,設(shè)每次射擊是否擊中目標(biāo)相互間沒有影響,則他“擊中3次且恰有兩次連中”的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列結(jié)論:
①當(dāng)m=-
3
4
時(shí),圓C:(x-1)2+(y-2)2=25倍直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R)截得的弦長(zhǎng)最短.
②若方程a2x2+(a+2)y2+2ax+a=0表示圓,則a=-1
③已知△ABC中,頂點(diǎn)A(2,1),B(-1,-1),∠C的平分線所在直線方程為x+2y-1=0,則頂點(diǎn)C的坐標(biāo)為(
31
5
,-
13
5

④過(guò)點(diǎn)P引三條不共面的直線PA,PB,PC,其中∠BPC=90°,∠APC=∠APB=60°,且PA=PB=PC,則平面ABC⊥平面BPC,
其中正確的結(jié)論個(gè)數(shù)是(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知等邊三角形的兩頂點(diǎn)坐標(biāo)分別是(x1,y1)、(x2,y2),求第三個(gè)頂點(diǎn)的坐標(biāo)(用含x1,y1,x2,y2)的代數(shù)式表示;
(2)已知正方形的兩頂點(diǎn)坐標(biāo)分別是(x1,y1)、(x2,y2),求第三、四頂點(diǎn)的坐標(biāo)(用含x1,y1,x2,y2)的代數(shù)式表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2-2|x|-3的單調(diào)增區(qū)間是( 。
A、(-∞,-1]和[0,1]
B、[1,+∞)
C、[-1,0]和[1,+∞)
D、(-1,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案