某商場預(yù)計2014年從1月起前個月顧客對某種商品的需求總量(單位:件)
(1)寫出第個月的需求量的表達式;
(2)若第個月的銷售量(單位:件),每件利潤(單位:元),求該商場銷售該商品,預(yù)計第幾個月的月利潤達到最大值?月利潤的最大值是多少?(參考數(shù)據(jù):

(1) f(x)= .;(2) .第6個月時最大利潤為3000元

解析試題分析:(1)利用數(shù)列求和的遞推思想可得第x個月的需求量.
(2)由(1)可得第x個月的需求量.根據(jù)利潤計算公式求得月利潤.利用分段函數(shù)的范圍求出各段利潤的最大值.最大值的求解是通過求導(dǎo)的知識.本題屬于應(yīng)用題的問題,閱讀理解題意要細(xì)心.其中涉及求和的問題,有涉及第幾個月的問題,及是數(shù)列中的通項與求和關(guān)系.另外通過分段的求導(dǎo)在對比出最大值.
試題解析:(1)時,f(x)="p(x)-p(x-1)=" .x=1時p(x)=39也滿足所以f(x)= ..
(2)設(shè)該商場第x個月的月利潤為w(元).則①時.w(x)= ..由.得x=6.所以w(x)在[1,6]上遞增,在[6,7)上遞減.所以.②=1000..所以w(x)在[7,8]上遞增,在(8,12]上遞減.所以.綜上.第6個月時最大利潤為3000元.
考點:1.數(shù)列的通項問題.2.導(dǎo)數(shù)求最值問題.3.分段函數(shù)問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(Ⅰ)當(dāng)時,求函數(shù)的極小值;
(Ⅱ)若函數(shù)上為增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若在區(qū)間上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)上是減函數(shù),求實數(shù)a的最小值;
(Ⅲ)若,使)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),,(其中),設(shè).
(Ⅰ)當(dāng)時,試將表示成的函數(shù),并探究函數(shù)是否有極值;
(Ⅱ)當(dāng)時,若存在,使成立,試求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若函數(shù)的值域為,若關(guān)于的不等式的解集為,求的值;
(Ⅱ)當(dāng)時,為常數(shù),且,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),),
(Ⅰ)證明:當(dāng)時,對于任意不相等的兩個正實數(shù)、,均有成立;
(Ⅱ)記,
(ⅰ)若上單調(diào)遞增,求實數(shù)的取值范圍;
(ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)若,設(shè)是函數(shù)的兩個極值點,且,記分別為的極大值和極小值,令,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)。
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若,證明當(dāng)時,函數(shù)的圖象恒在函數(shù)圖象的上方.

查看答案和解析>>

同步練習(xí)冊答案