已知函數(shù)(,),.
(Ⅰ)證明:當時,對于任意不相等的兩個正實數(shù)、,均有成立;
(Ⅱ)記,
(ⅰ)若在上單調(diào)遞增,求實數(shù)的取值范圍;
(ⅱ)證明:.
(Ⅰ)詳見解析;(Ⅱ)(ⅰ),(ⅱ) 詳見解析.
解析試題分析:(Ⅰ)當時,對于任意不相等的兩個正實數(shù)、,均有成立,只需求出與的解析式,兩式作差得,判斷符號即可證明;(Ⅱ)記,若在上單調(diào)遞增,求實數(shù)的取值范圍,首先求出的解析式,從而得,若它在上單調(diào)遞增,即它的導函數(shù)在上恒大于零,得恒成立,這是恒成立問題,只需把含有的放到不等式的一側(cè),不含的放到不等式的另一側(cè),即,轉(zhuǎn)化為求的最大值問題,可利用導數(shù)求出最大值,從而可得實數(shù)的取值范圍. 證明:,因為,只需證它的最小值為,可利用導數(shù)證明它的最小值為即可.
試題解析:(Ⅰ)證明: ,
,
,則 ①
,則,②
由①②知.
(Ⅱ)(。,,
令,則在上單調(diào)遞增.
,則當時,恒成立,
即當時,恒成立.
令,則當時,,
故在上單調(diào)遞減,從而,
故.(14分)
(ⅱ)法一:,令,
則表示上一點與直線上一點距離的平方.
令,則,
可得在上單調(diào)遞減,在上單調(diào)遞增,
故,則,
直線與的圖象相切與點,點到直線的距離為,
則,故.
法二:,
令,則.
令
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),其中
(Ⅰ)若是函數(shù)的極值點,求實數(shù)的值;
(Ⅱ)若對任意的(為自然對數(shù)的底數(shù))都有成立,求實數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(I) 當,求的最小值;
(II) 若函數(shù)在區(qū)間上為增函數(shù),求實數(shù)的取值范圍;
(III)過點恰好能作函數(shù)圖象的兩條切線,并且兩切線的傾斜角互補,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某商場預計2014年從1月起前個月顧客對某種商品的需求總量(單位:件)
(1)寫出第個月的需求量的表達式;
(2)若第個月的銷售量(單位:件),每件利潤(單位:元),求該商場銷售該商品,預計第幾個月的月利潤達到最大值?月利潤的最大值是多少?(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某連鎖分店銷售某種商品,每件商品的成本為元,并且每件商品需向總店交元的管理費,預計當每件商品的售價為元時,一年的銷售量為萬件.
(1)求該連鎖分店一年的利潤(萬元)與每件商品的售價的函數(shù)關系式;
(2)當每件商品的售價為多少元時,該連鎖分店一年的利潤最大,并求出的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)的圖象在與軸交點處的切線方程是.
(I)求函數(shù)的解析式;
(II)設函數(shù),若的極值存在,求實數(shù)的取值范圍以及函數(shù)取得極值時對應的自變量的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),恒過定點.
(1)求實數(shù);
(2)在(1)的條件下,將函數(shù)的圖象向下平移1個單位,再向左平移個單位后得到函數(shù),設函數(shù)的反函數(shù)為,直接寫出的解析式;
(3)對于定義在上的函數(shù),若在其定義域內(nèi),不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com