分析 由約束條件作出可行域,聯(lián)立方程組求出最優(yōu)解的坐標,代入目標函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}x-y≥1\\ x+y≤4\\ x≥0\\ y≥0\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{x+y=4}\\{x-y=1}\end{array}\right.$,解得A($\frac{5}{2}$,$\frac{3}{2}$),
聯(lián)立$\left\{\begin{array}{l}{y=0}\\{x+y=4}\end{array}\right.$,解得B(4,0),
由圖可知,當目標函數(shù)z=x-3y過A時,z有最小值為-2;
當目標函數(shù)z=x-3y過B時,z有最大值為:4.
故答案為:[-2,4].
點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}+1}}{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}+1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | $(-\frac{1}{e},2{e^2})$ | C. | (0,2e2) | D. | $(-\frac{1}{e},0)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com