18.(1)已知點(diǎn)M與兩個(gè)定點(diǎn)O(0,0)、P(2,0)的距離的比為$\sqrt{3}$:1,求點(diǎn)M的軌跡方程;
(2)已知過點(diǎn)Q(-1,0)的直線l截(1)中M的軌跡的弦長(zhǎng)為2,求直線l的方程.

分析 (1)設(shè)出M的坐標(biāo),直接由點(diǎn)M與兩個(gè)定點(diǎn)O(0,0)、P(2,0)的距離的比為$\sqrt{3}$:1,列式整理得方程.
(2)過點(diǎn)Q(-1,0)的直線l截(1)中M的軌跡的弦長(zhǎng)為2,可得圓心到直線的距離,利用點(diǎn)到直線的距離公式,建立方程,即可求直線l的方程.

解答 解:(1)設(shè)M(x,y),由點(diǎn)M與兩個(gè)定點(diǎn)O(0,0)、P(2,0)的距離的比為$\sqrt{3}$:1,得
$\frac{\sqrt{{x}^{2}+{y}^{2}}}{\sqrt{(x-2)^{2}+{y}^{2}}}$=$\sqrt{3}$,整理得:(x-3)2+y2=3.
∴點(diǎn)M的軌跡方程是(x-3)2+y2=3.
(2)∵過點(diǎn)Q(-1,0)的直線l截(1)中M的軌跡的弦長(zhǎng)為2,
∴圓心到直線的距離為d=$\sqrt{3-1}$=$\sqrt{2}$,
設(shè)直線l的方程為y=k(x+1),即kx-y+k=0,
∴圓心到直線的距離為$\frac{|4k|}{\sqrt{{k}^{2}+1}}$=$\sqrt{2}$,
∴k=±$\frac{\sqrt{7}}{7}$,
∴直線l的方程為y=±$\frac{\sqrt{7}}{7}$(x+1),

點(diǎn)評(píng) 本題考查了軌跡方程的求法,考查了直線與圓的位置關(guān)系,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.{an}為等比數(shù)列,若a2=2,a5=$\frac{1}{4}$,則a1a2+a2a3+…+anan+1=$\frac{32}{3}$(1-$\frac{1}{{4}^{n}}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖所示,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,|$\overrightarrow{OC}$|=$\sqrt{3}$,∠AOB=60°,$\overrightarrow{OB}$⊥$\overrightarrow{OC}$.若$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,則x,y的值分別是( 。
A.-2,-1B.-2,1C.2,-1D.2,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某興趣小組有4名男生,5名女生.從中選派5名學(xué)生參加一次活動(dòng),要求必須2名男生,3名女生,且女生甲必須在內(nèi),有多少種選派方法?從中選派5名學(xué)生參加一次活動(dòng),要求有女生但人數(shù)必須少于男生,有多少種選派方法?分成三組,每組3人,有多少種不同的分法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求函數(shù)y=-sin2x-cosx+2,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.直線L:y=k(x-5)與圓O:x2+y2=16相交于A、B兩點(diǎn),當(dāng)k變動(dòng)時(shí),求弦AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.有一個(gè)正三角形的兩個(gè)頂點(diǎn)在拋物線y2=2px(p>0)上,另一頂點(diǎn)在原點(diǎn),則該三角形的邊長(zhǎng)是( 。
A.2$\sqrt{3}$pB.4$\sqrt{3}$pC.6$\sqrt{3}$pD.8$\sqrt{3}$p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.圓C:(x-1)2+(y=2)2=4,點(diǎn)P(x0,y0)在圓C內(nèi)部,且d=(x0-1)2+(y0+2)2,則d的取值范圍是[0,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在直三棱柱ABC-A1B1C1中,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1=3,$\overrightarrow{BD}$=2$\overrightarrow{D{A}_{1}}$,$\overrightarrow{{C}_{1}E}$=2$\overrightarrow{EA}$,則DE等于( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.$\sqrt{7}$

查看答案和解析>>

同步練習(xí)冊(cè)答案