【題目】直角三角形ABC中角A,B,C對(duì)邊長(zhǎng)分別為a,b,c,∠C=90°.
(1)若三角形面積為2,求斜邊長(zhǎng)c最小值;
(2)試比較an+bn與cn(n∈N*)的大小,并說明理由.
【答案】
(1)解:∵ ab=2,∴ab=4.
∵∠C=90°,
∴a2+b2=c2≥2ab=8,解得c≥ .當(dāng)且僅當(dāng)a=b=2時(shí)取等號(hào).
∴斜邊長(zhǎng)c最小值為2
(2)解:①當(dāng)n=1時(shí),a+b>c;
②當(dāng)n=2時(shí),∵∠C=90°,∴a2+b2=c2;
③當(dāng)n≥3時(shí),設(shè)cosθ= ,sinθ= , .
則 =cosnθ+sinnθ<cos2θ+sin2θ=1,
∴an+bn<cn.
【解析】(1)由 ab=2,可得:ab=4.由∠C=90°,可得a2+b2=c2 , 利用基本不等式的性質(zhì)即可得出.(2)①當(dāng)n=1時(shí),利用三角形三邊大小關(guān)系可得a+b>c;②當(dāng)n=2時(shí),由∠C=90°,利用勾股定理可得a2+b2=c2;③當(dāng)n≥3時(shí),設(shè)cosθ= ,sinθ= , .由 =cosnθ+sinnθ,再利用三角函數(shù)的單調(diào)性即可得出.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解基本不等式的相關(guān)知識(shí),掌握基本不等式:,(當(dāng)且僅當(dāng)時(shí)取到等號(hào));變形公式:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)f(x)=lg (x≠0,x∈R)有下列命題:
①函數(shù)y=f(x)的圖象關(guān)于y軸對(duì)稱;
②在區(qū)間(﹣∞,0)上,函數(shù)y=f(x)是減函數(shù);
③函數(shù)f(x)的最小值為lg2;
④在區(qū)間(1,+∞)上,函數(shù)f(x)是增函數(shù).
其中正確命題序號(hào)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,平面平面,四邊形是菱形,四邊形是矩形,,,,是的中點(diǎn).
(Ⅰ)求證:平面;
(II)在線段上是否存在一點(diǎn),使三棱錐的體積為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于回歸分析的說法中錯(cuò)誤的是( )
A. 回歸直線一定過樣本中心
B. 殘差圖中殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型比較合適
C. 兩個(gè)模型中殘差平方和越小的模型擬合的效果越好
D. 甲、乙兩個(gè)模型的分別約為0.98和0.80,則模型乙的擬合效果更好
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,在平面直角坐標(biāo)系中,直線經(jīng)過點(diǎn),傾斜角.
(1)寫出曲線的直角坐標(biāo)方程和直線的參數(shù)方程;
(2)設(shè)與曲線相交于, 兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù){an}:a1=t,n2Sn+1=n2(Sn+an)+an2 , n=1,2,….
(1)設(shè){an}為等差數(shù)列,且前兩項(xiàng)和S2=3,求t的值;
(2)若t= ,證明: ≤an<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且 (a﹣ccosB)=bsinC.
(1)求角C的大小;
(2)若c=2,則當(dāng)a,b分別取何值時(shí),△ABC的面積取得最大值,并求出其最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的個(gè)數(shù)是( )
①函數(shù)的零點(diǎn)有2個(gè);
②函數(shù)的最小正周期是;
③命題“函數(shù)在處有極值,則”的否命題是真命題;
④.
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某公司生產(chǎn)某款手機(jī)的年固定成本為40萬元,每生產(chǎn)1萬只還需另投入16萬元.設(shè)該公司一年內(nèi)共生產(chǎn)該款手機(jī)萬只并全部銷售完,每萬只的銷售收入為萬元,且
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬只)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少萬只時(shí),該公司在該款手機(jī)的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com