【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且 (a﹣ccosB)=bsinC.
(1)求角C的大;
(2)若c=2,則當(dāng)a,b分別取何值時(shí),△ABC的面積取得最大值,并求出其最大值.

【答案】
(1)解:∵ (a﹣ccosB)=bsinC,由正弦定理可得: (sinA﹣sinCcosB)=sinBsinC,

化為: [sin(B+C)﹣sinCcosB]= sinBcosC=sinBsinC,

∵sinB≠0,

∴tanC=

∵C∈(0,π),

∴C=


(2)解:c=2,C= ,由余弦定理可得:c2=a2+b2﹣2abcos

∴4≥2ab﹣ab=ab>0,當(dāng)且僅當(dāng)a=b=2時(shí)取等號(hào).

又SABC= sin = ab≤ ,當(dāng)且僅當(dāng)a=b=2時(shí)取等號(hào)


【解析】(1) (a﹣ccosB)=bsinC,由正弦定理可得: (sinA﹣sinCcosB)=sinBsinC,由sinB≠0,展開可得tanC= ,即可得出.(2)由余弦定理可得:c2=a2+b2﹣2abcos ,再利用基本不等式的性質(zhì)可得:4≥ab>0,SABC= sin = ab即可得出.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正弦定理的定義的相關(guān)知識(shí),掌握正弦定理:,以及對(duì)余弦定理的定義的理解,了解余弦定理:;;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c為△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,向量 =(﹣1, ), =(cosA,sinA).若 ,且acosB+bcosA=csinC,則角A,B的大小分別為( )
A. ,
B. ,
C. ,
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從向陽(yáng)小區(qū)抽取100戶居民進(jìn)行月用電量調(diào)查,為制定階梯電價(jià)提供數(shù)據(jù),發(fā)現(xiàn)其用電量都在50到350度之間,制作頻率分布直方圖的工作人員粗心大意,位置t處未標(biāo)明數(shù)據(jù),你認(rèn)為t=(

A.0.0041
B.0.0042
C.0.0043
D.0.0044

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直角三角形ABC中角A,B,C對(duì)邊長(zhǎng)分別為a,b,c,∠C=90°.
(1)若三角形面積為2,求斜邊長(zhǎng)c最小值;
(2)試比較an+bn與cn(n∈N*)的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

)當(dāng)時(shí),討論函數(shù)的單調(diào)性

)若,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中,,的中點(diǎn),是等腰三角形,的中點(diǎn),上一點(diǎn).

I)若平面,求

II)平面將三棱柱分成兩個(gè)部分,求較小部分與較大部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù)為增函數(shù),對(duì)任意都有為常數(shù))

(1)判斷為何值時(shí),為奇函數(shù),并證明;

(2)設(shè)上的增函數(shù),且,若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

(3)若,的前項(xiàng)和,求正整數(shù),使得對(duì)任意均有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于y=3sin(2x﹣ )有以下命題:
①f(x1)=f(x2)=0,則x1﹣x2=kπ(k∈Z);
②函數(shù)的解析式可化為y=3cos(2x﹣ );
③圖象關(guān)于x=﹣ 對(duì)稱;④圖象關(guān)于點(diǎn)(﹣ ,0)對(duì)稱.
其中正確的是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,若在區(qū)間上有且只有一個(gè)極值點(diǎn),則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案