【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若,對(duì)恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),設(shè).若正實(shí)數(shù),滿足,,,證明:.
【答案】(1)詳見解析;(2);(3)證明見解析
【解析】
(1)求導(dǎo)后,分別在和兩種情況下根據(jù)導(dǎo)函數(shù)的正負(fù)求得函數(shù)的單調(diào)區(qū)間;
(2)通過分離變量得到,令,利用導(dǎo)數(shù)可求得最大值,由此得到;
(3)設(shè),以為變量,令,通過判斷導(dǎo)函數(shù)的正負(fù)可確定在上單調(diào)遞增,得到,從而得到結(jié)論.
(1)由題意知:定義域?yàn)?/span>,,
令,則,
①當(dāng)時(shí),,即恒成立,
函數(shù)的單調(diào)遞增區(qū)間為;無單調(diào)遞減區(qū)間;
②當(dāng)時(shí),令,
解得:,,可知,
當(dāng)和時(shí),,即;
當(dāng)時(shí),,即;
的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;
綜上所述:①當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;
②當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為.
(2)對(duì)恒成立,即為對(duì)任意的,都有,
設(shè),則,
令,則,
∴在上單調(diào)遞減,又,
∴當(dāng)時(shí),,即,單調(diào)遞增;
當(dāng),,即,單調(diào)遞減,
∴,
∴實(shí)數(shù)的取值范圍為.
(3)證明:當(dāng)時(shí),,
不妨設(shè),以為變量,令,
則
且,
,即,又為增函數(shù),
;
,,在上單調(diào)遞增,
,,
即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線焦點(diǎn)為,且,,過作斜率為的直線交拋物線于、兩點(diǎn).
(1)若,,求;
(2)若為坐標(biāo)原點(diǎn),為定值,當(dāng)變化時(shí),始終有,求定值的大;
(3)若,,,當(dāng)改變時(shí),求三角形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別為內(nèi)角A,B,C的對(duì)邊,若同時(shí)滿足以下四個(gè)條件中的三個(gè):①,②,③,④.
(1)條件①②能否同時(shí)滿足,請(qǐng)說明理由;
(2)以上四個(gè)條件,請(qǐng)?jiān)跐M足三角形有解的所有組合中任選一組,并求出對(duì)應(yīng)的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“眾志成城,抗擊疫情,一方有難,八方支援”,在此次抗擊疫情過程中,各省市都派出援鄂醫(yī)療隊(duì). 假設(shè)汕頭市選派名主任醫(yī)生,名護(hù)士,組成三個(gè)醫(yī)療小組分配到湖北甲、乙、丙三地進(jìn)行醫(yī)療支援,每個(gè)小組包括名主任醫(yī)生和名護(hù)士,則不同的分配方案有( )
A.種B.種C.種D.種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率為,左焦點(diǎn)到直線的距離為10,圓.
(1)求橢圓的方程;
(2)若是橢圓上任意一點(diǎn),為圓的任一直徑,求的取值范圍;
(3)是否存在以橢圓上點(diǎn)為圓心的圓,使得過圓上任意一點(diǎn)作圓的切線,切點(diǎn)為,都滿足?若存在,求出圓的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐的底面為菱形,,,為的中點(diǎn),為上一點(diǎn),且,若,.
(1)求證:平面;
(2)求證:平面;
(3)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù),.
(Ⅰ)求函數(shù)在處的切線;
(Ⅱ)若函數(shù)在處有最大值,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,.
(1)當(dāng)時(shí),證明:;
(2)已知點(diǎn),點(diǎn),O為坐標(biāo)原點(diǎn),函數(shù),請(qǐng)判斷:當(dāng)時(shí)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】培養(yǎng)某種水生植物需要定期向培養(yǎng)植物的水中加入物質(zhì),已知向水中每投放1個(gè)單位的物質(zhì),(單位:天)時(shí)刻后水中含有物質(zhì)的量增加,與的函數(shù)關(guān)系可近似地表示為關(guān)系可近似地表示為.根據(jù)經(jīng)驗(yàn),當(dāng)水中含有物質(zhì)的量不低時(shí),物質(zhì)才能有效發(fā)揮作用.
(1)若在水中首次投放1個(gè)單位的物質(zhì),計(jì)算物質(zhì)能持續(xù)有效發(fā)揮作用幾天?
(2)若在水中首次投放1個(gè)單位的物質(zhì),第8天再投放1個(gè)單位的物質(zhì),試判斷第8天至第12天,水中所含物質(zhì)的量是否始終不超過,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com