【題目】在平面四邊形中, , ,將沿折起,使得平面平面,如圖.
(1)求證: ;
(2)若為中點,求直線與平面所成角的正弦值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在梯形中,,四邊形為矩形,平面平面,.
(1)求證:平面;
(2)點在線段上運動,設平面與平面所成二面角的平面角為,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中).
(Ⅰ) 當時,若在其定義域內(nèi)為單調(diào)函數(shù),求的取值范圍;
(Ⅱ) 當時,是否存在實數(shù),使得當時,不等式恒成立,如果存在,求的取值范圍,如果不存在,說明理由(其中是自然對數(shù)的底數(shù),=2.71828…).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,離心率為,點為坐標原點,若橢圓與曲線的交點分別為(下上),且兩點滿足.
(1)求橢圓的標準方程;
(2)過橢圓上異于其頂點的任一點,作的兩條切線,切點分別為,且直線在軸、軸上的截距分別為,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知拋物線,過點任作一直線與相交于兩點,過點作軸的平行線與直線相交于點為坐標原點).
(1)證明: 動點在定直線上;
(2)作的任意一條切線 (不含軸), 與直線相交于點與(1)中的定直線相交于點.
證明: 為定值, 并求此定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中,.是自然對數(shù)的底數(shù).
(1)求曲線在處的切線方程為,求實數(shù),的值;
(2)①若時,函數(shù)既有極大值又有極小值,求實數(shù)的取值范圍;
②若,,若對一切正實數(shù)恒成立,求實數(shù)的取值范圍(用表示).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為.
(Ⅰ)求滿足的概率;
(Ⅱ)設三條線段的長分別為和5,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com