已知極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同,已知曲線的極坐標(biāo)方程為
(Ⅰ)求的直角坐標(biāo)方程;
(Ⅱ)直線為參數(shù))與曲線C交于兩點(diǎn),與軸交于,求的值.

  

解析試題分析:(Ⅰ)運(yùn)用直角坐標(biāo)與極坐標(biāo)互化公式, (Ⅱ)直線參數(shù)方程中參數(shù)的幾何意義及應(yīng)用于求弦長(zhǎng).
試題解析:(1)
的直角坐標(biāo)方程為,即.5分
(2)將的參數(shù)方程代入曲線的直角坐標(biāo)方程,得,
設(shè)點(diǎn)對(duì)應(yīng)的參數(shù)分別為,則            7分
.  10分
考點(diǎn):直角坐標(biāo)與極坐標(biāo)互化公式, 直線參數(shù)方程中參數(shù)的幾何意義

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),若以直角坐標(biāo)系點(diǎn)為極點(diǎn),軸正方向?yàn)闃O軸,且長(zhǎng)度單位相同,建立極坐標(biāo)系,得直線的極坐標(biāo)方程為.求直線與曲線交點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線為參數(shù)),為參數(shù)).
(1)化的方程為普通方程,并說明它們分別表示什么曲線;
(2)過曲線的左頂點(diǎn)且傾斜角為的直線交曲線兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線l過點(diǎn)P(2,0),斜率為直線l和拋物線y2=2x相交于A、B兩點(diǎn),設(shè)線段AB的中點(diǎn)為M,求:(1)|PM|; (2)|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知在直角坐標(biāo)系xOy中,圓錐曲線C的參數(shù)方程為(θ為參數(shù)),直線l經(jīng)過定點(diǎn)P(2,3),傾斜角為
(Ⅰ)寫出直線l的參數(shù)方程和圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l與圓相交于A,B兩點(diǎn),求|PA|·|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

極坐標(biāo)系與直角坐標(biāo)系有相同的長(zhǎng)度單位,以原點(diǎn)為極點(diǎn),以軸正半軸為極軸.已知直線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程為.
(Ⅰ)求的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線交于兩點(diǎn),求弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù),0 ≤ α < π).以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線C的極坐標(biāo)方程為ρcos2θ = 4sinθ.
(1)求直線l與曲線C的平面直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于不同的兩點(diǎn)A、B,若,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程已知曲線C的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是:是參數(shù)).
(1)將曲線C的極坐標(biāo)方程和直線參數(shù)方程轉(zhuǎn)化為普通方程;
(2)若直線l與曲線C相交于A、B兩點(diǎn),且,試求實(shí)數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

我校高中生共有2700人,其中高一年級(jí)900人,高二年級(jí)1200人,高三年級(jí)600人,現(xiàn)采取分層抽樣法抽取容量為135的樣本,那么高一、高二、高三各年級(jí)抽取的人數(shù)分別為

A.45,75,15 B.45,45,45 C.30,90,15 D.45,60,30

查看答案和解析>>

同步練習(xí)冊(cè)答案