分析 根據(jù)已知中關于“莫言函數(shù)”,“莫言點”,“莫言圓”的定義,利用a=1,b=1,我們易求出“莫言點”坐標,并設出“莫言圓”的方程,根據(jù)兩點的距離公式求出圓心到“莫言函數(shù)”圖象上點的最小距離,即可得到結論.
解答 解:當a=b=1時,“莫言函數(shù)”為$f(x)=\frac{1}{|x|-1}$,
其圖象與y軸的交點坐標為(0,-1),所以“莫言點”的坐標是(0,1).
顯然f(x)為偶函數(shù),且當x≥0時,$f(x)=\frac{1}{x-1}$,則f(x)的大致圖象如圖所示.
由圖知,當“莫言圓”與函數(shù)f(x)(x>1)的圖象相切時,圓面積最。
設“莫言圓”圓心為C,在函數(shù)$f(x)=\frac{1}{x-1}(x>1)$圖象上任取一點P(x,y),
則${|{PC}|^2}={x^2}+{(\frac{1}{x-1}-1)^2}={x^2}+{(\frac{1}{x-1})^2}-\frac{2}{x-1}+1={x^2}+{(\frac{1}{x-1})^2}-\frac{2x}{x-1}+3={(x-\frac{1}{x-1})^2}+3≥3$,
即$|{PC}|≥\sqrt{3}$,所以“莫言圓”半徑的最小值為$\sqrt{3}$,面積的最小值是3π.
故答案為:(0,1),3π.
點評 本題給出“莫言函數(shù)”、“莫言點”、“莫言圓”的定義,求圓的最小面積.著重考查了函數(shù)的圖象、圓的方程、兩點的距離公式與圓面積求法等知識,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=±$\frac{4\sqrt{15}}{15}$x | B. | y=±$\sqrt{3}$x | C. | y=±$\frac{\sqrt{15}}{4}$ | D. | y=±$\frac{\sqrt{3}}{3}$x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 4 | C. | 3 | D. | 無數(shù)個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com