1.已知向量$\vec a=({sinθ,-2})$,$\vec b=({1,cosθ})$互相垂直,其中$θ∈(0,\frac{π}{2})$;
(1)求tan2θ的值;
(2)若$sin({θ-φ})=\frac{{\sqrt{10}}}{10},0<φ<\frac{π}{2}$,求cosφ的值.

分析 (1)由向量垂直,$\overrightarrow{a}$•$\overrightarrow$=(sinθ,-2)•(1,cosθ)=sinθ-2cosθ=0,tanθ=2,由正切函數(shù)的二倍角公式即可求得tan2θ的值;
(2)由$-\frac{π}{2}<θ-φ<\frac{π}{2}$,cos(θ-φ)=$\sqrt{1-si{n}^{2}(θ-φ)}$=$\frac{3\sqrt{10}}{10}$,由cosφ=cos[θ-(θ-φ)],根據(jù)兩角差的余弦公式即可求得cosφ的值.

解答 解:(1)由$\overrightarrow{a}$⊥$\overrightarrow$,
∴$\overrightarrow{a}$•$\overrightarrow$=(sinθ,-2)•(1,cosθ)=sinθ-2cosθ=0,
∴tanθ=2,
∴$tan2θ=\frac{2tanθ}{{1-{{tan}^2}θ}}=-\frac{4}{3}$….(6分)
(2)∵$θ∈(0,\frac{π}{2})$,0<φ<$\frac{π}{2}$,
$-\frac{π}{2}<θ-φ<\frac{π}{2}$,
∴cos(θ-φ)>0,cos(θ-φ)=$\sqrt{1-si{n}^{2}(θ-φ)}$=$\frac{3\sqrt{10}}{10}$,
cosφ=cos[θ-(θ-φ)]=cosθcos(θ-φ)+sinθsin(θ-φ),
=$\frac{3\sqrt{10}}{10}$•$\frac{\sqrt{5}}{5}$+$\frac{\sqrt{10}}{10}$•$\frac{2\sqrt{5}}{5}$,
=$\frac{\sqrt{2}}{2}$.…(12分)

點(diǎn)評(píng) 本題考查向量數(shù)量積的坐標(biāo)表示,考查向量垂直的充要條件,同角三角函數(shù)的基本關(guān)系,兩角差的余弦公式,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.y=$\sqrt{3}$sin$\frac{x}{2}$+cos$\frac{x}{2}$在[π,2π]上的最小值是( 。
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知正三角形ABC的三個(gè)頂點(diǎn)都在球心為O、半徑為2的球面上,且三棱錐O-ABC的高為1,點(diǎn)D是線段BC的中點(diǎn),過點(diǎn)D作球O的截面,則截面面積的最小值為$\frac{9π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)集合P={-1,0,1},$Q=\{x|\sqrt{x}<2\}$,則P∩Q=(  )
A.{-1,0,1}B.{0,1}C.{0}D.{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某程序框圖如圖所示,當(dāng)輸出y值為-8時(shí),則輸出x的值為( 。
A.64B.32C.16D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知前n項(xiàng)和Sn的正項(xiàng)數(shù)列{an}滿足lgan+1=$\frac{1}{2}$(lgan+lgan+2),且a3=4,S2=3,則(  )
A.2Sn=an+1B.Sn=2an+1C.2Sn=an-1D.Sn=2an-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.我們把形如$y=\frac{|x|-a}\;(a>0,b>0)$的函數(shù)稱為“莫言函數(shù)”,其圖象與y軸的交點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)稱為“莫言點(diǎn)”,以“莫言點(diǎn)”為圓心且與“莫言函數(shù)”的圖象有公共點(diǎn)的圓稱為“莫言圓”.則當(dāng)a=b=1時(shí),“莫言點(diǎn)”的坐標(biāo)是(0,1);且“莫言圓”的面積的最小值是3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-{x^2}-3x+1$.
(Ⅰ)求函數(shù)f(x)在x=0處的切線方程;
(Ⅱ)求函數(shù)f(x)在區(qū)間[-2,5]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,已知橢圓$C:\frac{x^2}{a^2}+{y^2}=1(a>1)$的上頂點(diǎn)為A,右焦點(diǎn)為F,直線AF與圓M:x2+y2-6x-2y+7=0相切.
(1)求橢圓C的方程;
(2)若不過點(diǎn)A的動(dòng)直線l與橢圓相交于P,Q兩點(diǎn),且$\overrightarrow{AP}•\overrightarrow{AQ}=0$,試問直線l能否過定點(diǎn),說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案