5.設(shè)F(c,0)為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn),A為右頂點(diǎn),過F作AF的垂線與雙曲線交于B,C兩點(diǎn),過B,C分別作AC,AB的垂線,兩垂線交于點(diǎn)D,若D到直線BC的距線離為2(a+c),則該雙曲線的漸近線斜率是( 。
A.±1B.±$\sqrt{2}$C.±2D.±3

分析 由題意可得D為△ABC的垂心,求得D(-c-2a,0),再由兩直線垂直的條件:斜率之積為-1,計(jì)算即可得到$\sqrt{2}$a=b,由漸近線方程即可得到所求.

解答 解:由題意可得D為△ABC的垂心,
即有AD⊥BC,即D在x軸上,
由D到直線BC的距離為2(a+c),
由2(a+c)=c-xD,
則D(-c-2a,0),
令x=c,可得y2=b2($\frac{{c}^{2}}{{a}^{2}}$-1),
解得y=±$\frac{^{2}}{a}$,
可設(shè)B(c,$\frac{^{2}}{a}$),C(c,-$\frac{^{2}}{a}$),
由BD⊥AC,可得kBD•kAC=-1,
即$\frac{\frac{^{2}}{a}}{2c+2a}$•$\frac{-\frac{^{2}}{a}}{c-a}$=-1,
化簡可得b2=2a2,即$\frac{a}$=$\sqrt{2}$,
即有雙曲線的漸近線的斜率為±$\sqrt{2}$.
故選:B.

點(diǎn)評 本題考查雙曲線的方程和性質(zhì),考查三角形的垂心的概念,以及兩直線垂直的條件,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知直線l的傾斜角為α,斜率為k,則“$α<\frac{π}{3}$”是“$k<\sqrt{3}$”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.函數(shù)f(x)=x+$\frac{a}{x+2}$在[1,+∞)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在?ABCD中,設(shè)三個(gè)頂點(diǎn)分別為A(-2,0)和B(-3,4)及C(2,5),求頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)y=$\sqrt{3+2x{-x}^{2}}$的值域?yàn)閇0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知雙曲線mx2-2my2=1的一個(gè)焦點(diǎn)坐標(biāo)為(0,-2),那么常數(shù)m=( 。
A.$\frac{3}{8}$B.-$\frac{3}{8}$C.-$\frac{\sqrt{5}}{4}$D.-$\frac{16}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖為2015年6月份北京空氣質(zhì)量指數(shù)AQI-PM2.5歷史數(shù)據(jù)的折線圖,以下結(jié)論不正確的是( 。

指數(shù)數(shù)值與等級(jí)水平表:
 指數(shù) 0~50 51~100 101~150 151~200 201~300>300
 等級(jí) 一級(jí)優(yōu) 二級(jí)良 三級(jí)輕度污染 四級(jí)中度污染 五級(jí)重度污染 六級(jí)嚴(yán)重污染
A.6月份空氣質(zhì)量為優(yōu)的天數(shù)為8天
B.6月份連續(xù)2天出現(xiàn)中度污染的概率為$\frac{2}{29}$
C.6月份北京空氣質(zhì)量指數(shù)AQI-PM2.5歷史數(shù)據(jù)的眾數(shù)為160
D.北京6月4至7日這4天的空氣質(zhì)量逐漸變好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.甲、乙兩艘貨輪均要到某深入港?浚
(1)若甲預(yù)計(jì)在元月1日、3日、5日中的一天到達(dá)該港口,乙預(yù)計(jì)在元月1日、2日、3日中的一天到達(dá)該港口,且甲、乙在預(yù)計(jì)日期到達(dá)該碼頭均是等可能的,求甲、乙在同一天到該港口的概率.
(2)若甲、乙均預(yù)計(jì)在元月1日00:00點(diǎn)---01:00點(diǎn)的任意時(shí)刻到達(dá)該港口,假設(shè)兩船到達(dá)的時(shí)刻相差不超過20分鐘,則后到的船必須要等待,求甲、乙中有船要等待的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若$θ∈(\frac{π}{4},\frac{π}{2}),sin2θ=\frac{1}{16}$,則cosθ-sinθ的值是(  )
A.$\frac{{\sqrt{15}}}{4}$B.$-\frac{{\sqrt{15}}}{4}$C.$\frac{1}{4}$D.$-\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊答案