【題目】將含有甲、乙、丙的6名醫(yī)護(hù)人員平均分成兩組到A、B兩家醫(yī)院參加防疫救護(hù)工作,則甲、乙至少有一人在A醫(yī)院且甲、丙不在同一家醫(yī)院參加防疫救護(hù)工作的概率為(

A.B.C.D.

【答案】C

【解析】

先計算含有甲、乙、丙的6名醫(yī)護(hù)人員平均分成兩組到A、B兩家醫(yī)院參加防疫救護(hù)工作的基本事件總數(shù),再計算甲、乙至少有一人在A醫(yī)院且甲、丙不在同一家醫(yī)院參加防疫救護(hù)工作包含的基本事件數(shù),最后由古典概率公式計算即可.

解:設(shè)含有甲、乙、丙的6名醫(yī)護(hù)人員的另外三人分別為,6名醫(yī)護(hù)人員平均分成兩組到醫(yī)院參加防疫救護(hù)工作有種不同分配方案.

甲、乙至少有一人在A醫(yī)院且甲、丙不在同一家醫(yī)院參加防疫救護(hù)工作包含的基本事件有:醫(yī)院有甲,甲,甲,乙丙,乙丙,乙丙,

甲乙,甲乙,甲乙,共有9種不同分配方法.根據(jù)古典概率公式得:甲、乙至少有一人在A醫(yī)院且

甲、丙不在同一家醫(yī)院參加防疫救護(hù)工作的概率為.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓周率π是數(shù)學(xué)中一個非常重要的數(shù),歷史上許多中外數(shù)學(xué)家利用各種辦法對π進(jìn)行了估算.現(xiàn)利用下列實(shí)驗(yàn)我們也可對圓周率進(jìn)行估算.假設(shè)某校共有學(xué)生N人,讓每人隨機(jī)寫出一對小于1的正實(shí)數(shù)a,b,再統(tǒng)計出a,b,1能構(gòu)造銳角三角形的人數(shù)M,利用所學(xué)的有關(guān)知識,則可估計出π的值是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】音樂是用聲音來表達(dá)人的思想感情的一種藝術(shù),明代的律學(xué)家朱載堉創(chuàng)建了十二平均律,并把十二平均律計算得十分精確,與當(dāng)今的十二平均律完全相同,其方法是將一個八度音程(即相鄰的兩個具有相同名稱的音之間,如圖中88鍵標(biāo)準(zhǔn)鋼琴鍵盤的一部分中,cc1便是一個八度音程)均分為十二等分的音律,如果用正式的音樂術(shù)語稱呼原來的7個音符,分別是c,d,e,f,g,a,b,則多出來的5個音符為c#(讀做“升c”),d#f#,g#,a#;12音階為:c,c#,d,d#e,f,f#g,g#a,a#,b,相鄰音階的頻率之比為1.如圖,則鍵盤cd的頻率之比為1,鍵盤ef的頻率之比為1,鍵盤cc1的頻率之比為12,由此可知,圖中的鍵盤b1f2的頻率之比為(

A.B.1C.1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),f(x)的導(dǎo)函數(shù).

1)證明:當(dāng)x0時,f(x)0;

2)證明:()上有且只有3個零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,D的中點(diǎn).

1)證明:平面

2)若是邊長為2的正三角形,且,,平面平面.求平面與側(cè)面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,直線的參數(shù)方程為t為參數(shù)),,點(diǎn)A為直線與曲線C在第二象限的交點(diǎn),過O點(diǎn)的直線與直線互相垂直,點(diǎn)B為直線與曲線C在第三象限的交點(diǎn).

1)寫出曲線C的直角坐標(biāo)方程及直線的普通方程;

2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在郊野公園的景觀河的兩岸,、是夾角為120°的兩條岸邊步道(長度均超過千米),為方便市民觀光游覽,現(xiàn)準(zhǔn)備在河道拐角處的另一側(cè)建造一個觀景臺,在兩條步道上分別設(shè)立游客上下點(diǎn)、,從、到觀景臺建造兩條游船觀光線路、,測得千米.

1)求游客上下點(diǎn)、間的距離;

2)若,設(shè),求兩條觀光線路之和關(guān)于的表達(dá)式,并求其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)且在上的最大值為,

1)求函數(shù)f(x)的解析式;

(2)判斷函數(shù)f(x)在(0π)內(nèi)的零點(diǎn)個數(shù),并加以證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是偶函數(shù),且在R上有導(dǎo)函數(shù),若對都有,則關(guān)于函數(shù)的四個判斷:①若函數(shù)在處有定義,則;②;③是周期函數(shù);④若函數(shù)在處有定義,則.其中正確的判斷有(

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案