【題目】在平面直角坐標系中,以原點O為極點,以x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為,直線的參數(shù)方程為(t為參數(shù)),,點A為直線與曲線C在第二象限的交點,過O點的直線與直線互相垂直,點B為直線與曲線C在第三象限的交點.
(1)寫出曲線C的直角坐標方程及直線的普通方程;
(2)若,求的面積.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,將其左、右焦點和短軸的兩個端點順次連接得到一個面積為的正方形.
(1)求橢圓的方程;
(2)直線與橢圓交于、兩點(均不在軸上),點,若直線、、的斜率成等比數(shù)列,且的面積為(為坐標原點),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】每到春夏交替時節(jié),雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理楊絮方法的贊同情況,某課題小組隨機調査了部分市民(問卷調査表如下表所示),并根據調查結果繪制了尚不完整的統(tǒng)計圖表(如下圖)
由兩個統(tǒng)計圖表可以求得,選擇D選項的人數(shù)和扇形統(tǒng)計圖中E的圓心角度數(shù)分別為( )
A.500,28.8°B.250,28.6°C.500,28.6°D.250,28.8°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將含有甲、乙、丙的6名醫(yī)護人員平均分成兩組到A、B兩家醫(yī)院參加“防疫救護”工作,則甲、乙至少有一人在A醫(yī)院且甲、丙不在同一家醫(yī)院參加“防疫救護”工作的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C方程為,橢圓中心在原點,焦點在x軸上.
(1)證明圓C恒過一定點M,并求此定點M的坐標;
(2)判斷直線與圓C的位置關系,并證明你的結論;
(3)當時,圓C與橢圓的左準線相切,且橢圓過(1)中的點M,求此時橢圓方程;在x軸上是否存在兩定點A,B使得對橢圓上任意一點Q(異于長軸端點),直線,的斜率之積為定值?若存在,求出A,B坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產某種電子產品,每件產品合格的概率均為,現(xiàn)工廠為提高產品聲譽,要求在交付用戶前每件產品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產品,且每件產品檢驗合格與否相互獨立.若每件產品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢驗方案:將產品每個()一組進行分組檢驗,如果某一組產品檢驗合格,則說明該組內產品均合格,若檢驗不合格,則說明該組內有不合格產品,再對該組內每一件產品單獨進行檢驗,如此,每一組產品只需檢驗一次或次.設該工廠生產件該產品,記每件產品的平均檢驗次數(shù)為.
(1)的分布列及其期望;
(2)(i)試說明,當越大時,該方案越合理,即所需平均檢驗次數(shù)越少;
(ii)當時,求使該方案最合理時的值及件該產品的平均檢驗次數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是一位發(fā)燒病人的體溫記錄折線圖,下列說法不正確的是( )
A.病人在5月13日12時的體溫是
B.病人體溫在5月14日0時到6時下降最快
C.從體溫上看,這個病人的病情在逐漸好轉
D.病人體溫在5月15日18時開始逐漸穩(wěn)定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,直線將矩形紙分為兩個直角梯形和,將梯形沿邊翻折,如圖2,在翻折的過程中(平面和平面不重合),下面說法正確的是
圖1 圖2
A.存在某一位置,使得平面
B.存在某一位置,使得平面
C.在翻折的過程中,平面恒成立
D.在翻折的過程中,平面恒成立
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com