如表是某校高一年級一次考試中數(shù)學(xué)和英語的成績抽樣:
        A B C
 A 7 20 5
 B 9 18 6
 C a 4 b
若抽取學(xué)生n人,成績分為A(優(yōu)秀)、B(良好)、C(及格)三個等級,設(shè)x,y分別表示數(shù)學(xué)成績與英語成績.例如:表中數(shù)學(xué)成績?yōu)锽等級的共有20+18+4=42人,已知x與y均為B等級的概率是0.18.
(1)若在該樣本中,數(shù)學(xué)成績優(yōu)秀是30%,求a,b的值;
(2)在英語成績?yōu)镃等級的學(xué)生中,已知a=10,b=8,求數(shù)學(xué)成績?yōu)锳等級的人數(shù)比C等級的人數(shù)少數(shù)少的概率.
考點:列舉法計算基本事件數(shù)及事件發(fā)生的概率
專題:概率與統(tǒng)計
分析:(1)由由
7+9+a
100
=0.3,得a=14,由此能求出b的值.
(2)由題意,知a+b=31,且a≥10,b≥8,用列舉法滿足條件的(a,b)有14組,且每組出現(xiàn)的可能性相同,找出其中數(shù)學(xué)成績?yōu)锳等級的人數(shù)比C等級的人數(shù)少的有6組,根據(jù)概率公式計算即可.
解答: 解:(1)由
7+9+a
100
=0,3,得a=14,
∵7+9+a+20+18+4+5+6+b=100,
解得b=17.
(2)由題意,知a+b=31,且a≥10,b≥8,
∴滿足條件的(a,b)有:(10,21),(11,20),
(12,19),(13,18),(14,17),(15,16),(16,15),
(17,14),(18,13),(19,12),(20,11),
(21,10),(22,9),(23,8)共14組,
且每組出現(xiàn)的可能性相同.
其中數(shù)學(xué)成績?yōu)锳等級的人數(shù)比C等級的人數(shù)少:
(10,21),(11,21),(12,19),(13,18),(14,17),(15,16)共6組.
∴數(shù)學(xué)成績?yōu)锳等級的人數(shù)比C等級的人數(shù)少數(shù)少概率為
6
14
=
3
7
點評:本題考查概率的求法,解題時要認(rèn)真審題,注意列舉法的合理運用.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知方程
x2
2-k
+
y2
k-1
=1表示的圖形是:(1)雙曲線;(2)橢圓;(3)圓.試分別求出k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如表是某市近十年糧食的需求量的部分統(tǒng)計數(shù)據(jù):
年份20042006200820102012
年需求量(萬噸)237247257277267
(1)將表中以2008年為基準(zhǔn)進行預(yù)處理,填完如表:
年份2008-4-20  
年需求量-257  02030
(2)利用(1)中的數(shù)據(jù)求出年需求量y與年份x之間的線性回歸方程;
(3)利用(2)所求的直線方程預(yù)測該市2014年的糧食需求量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2+3x+2a-3=0在(1,3]上有解,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點A(0,a)(a>0),直線l1:y=-a交y軸于點B,記過點A且與直線l1相切的圓的圓心為點C.
(1)求動點C的軌跡E的方程;
(2)設(shè)傾斜角為α的直線l2過點A,交軌跡E于兩點P、Q.若tanα=1,且△PBQ的面積為
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐的底面邊長為
2
,各側(cè)面均為直角三角形,則它的外接球體積為( 。
A、
4
3
π
27
B、
2
π
3
C、
3
π
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=5-
6
x
,則f(x)在x∈(0,+∞)是
 
(增函數(shù),減函數(shù))若f(x)在[a,b](0<a<b)的值域是[a,b],則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩燈塔A、B與海洋觀察站C的距離都等于a km,燈塔A在觀察站C的北偏東30°,燈塔B在觀察站C南偏東60°,則A、B之間的距離為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2為為雙曲線C:
x2
a2
-
y2
b2
=1的兩個焦點,焦距|F1F2|=6,過左焦點F1垂直于x軸的直線,與雙曲線C相交于A,B兩點,且△ABF2為等邊三角形.
(1)求雙曲線C的方程;
(2)設(shè)T為直線x=1上任意一點,過右焦點F2作TF2的垂線交雙曲線C與P,Q兩點,求證:直線OT平分線段PQ(其中O為坐標(biāo)原點);
(3)是否存在過右焦點F2的直線l,它與雙曲線C的兩條漸近線分別相交于R,S兩點,且使得△F1RS的面積為6
2
?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案