1.若f(x)=$\sqrt{{x}^{2}-ax+4}$在[0,1]上單調(diào)遞減,則實數(shù)a的取值范圍為[2,5].

分析 利用換元法結(jié)合復合函數(shù)單調(diào)性之間的關(guān)系進行求解.

解答 解:設t=g(x)=x2-ax+4,則y=$\sqrt{t}$為增函數(shù),
若f(x)=$\sqrt{{x}^{2}-ax+4}$在[0,1]上單調(diào)遞減,
則t=g(x)=x2-ax+4在[0,1]上單調(diào)遞減,且g(1)≥0,
即$-\frac{-a}{2}$=$\frac{a}{2}$≥1且1-a+4≥0,
則a≥2且a≤5,即2≤a≤5,
故答案為:[2,5].

點評 本題主要考查函數(shù)單調(diào)性的應用,根據(jù)復合函數(shù)單調(diào)性之間的關(guān)系,利用換元法結(jié)合根式函數(shù)和一元二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

14.設函數(shù)f(x)=2x+log3$\frac{x-1}{1-ax}$為奇函數(shù),a為常數(shù).
(Ⅰ)求實數(shù)a的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性,并寫出單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=ax2-(a+2)x+2(a為常數(shù)).
(Ⅰ)當a=1時,解關(guān)于x的不等式f(x)<0;
(Ⅱ)當a∈R時,解關(guān)于x的不等式f(x)<0.
(Ⅲ)若對于任意x∈[2,3],總有f(x)>0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知集合A={1,2,3},集合B={x|a+1<x<6a-1},其中a∈R.
(1)寫出集合A的所有真子集;
(2)若A∩B={3},求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆山東臨沭一中高三上學期10月月考數(shù)學(文)試卷(解析版) 題型:解答題

已知函數(shù)

求:(1)函數(shù)的極值;

(2)函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,則$\overrightarrow$•(2$\overrightarrow{a}$+$\overrightarrow$)的值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.直線y=1的傾斜角是( 。
A.45°B.90°C.D.180°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.過點P(-$\sqrt{3}$,-1)的直線與曲線y=$\sqrt{1-{x^2}}$有公共點,則直線的斜率范圍是(  )
A.$[0,\frac{{\sqrt{3}}}{3}]$B.$[0,\sqrt{3}]$C.$[\sqrt{3}-1,\sqrt{3}]$D.$[\frac{{\sqrt{3}-1}}{2},\sqrt{3}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖

(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請用相關(guān)系數(shù)加以說明;
(Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預測2017年我國生活垃圾無害化處理量.
參考數(shù)據(jù):$\sum_{i=1}^{7}$yi=9.32,$\sum_{i=1}^{7}$tiyi=40.17,$\sqrt{\sum_{i=1}^{7}({y}_{i}-\overline{y})^{2}}$=0.55,$\sqrt{7}$≈2.646.
參考公式:相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$ 回歸方程$\widehat{y}$=$\widehat{a}$+$\widehat$t 中斜率和截距的最小二乘估計公式分別為:$\widehat$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$$\overline{t}$.

查看答案和解析>>

同步練習冊答案