某營養(yǎng)師要為某個兒童預(yù)訂午餐和晚餐.已知一個單位的午餐含12個單位的碳水化合物、6個單位的蛋白質(zhì)和6個單位的維生素C;一個單位的晚餐含8個單位的碳水化合物、6個單位的蛋白質(zhì)和10個單位的維生素C.另外,該兒童這兩餐需要的營養(yǎng)中至少含64個單位的碳水化合物、42個單位的蛋白質(zhì)和54個單位的維生素C.
如果一個單位的午餐、晚餐的費用分別是2.5元和4元,那么要滿足上述的營養(yǎng)要求,并且花費最少,應(yīng)當(dāng)為該兒童分別預(yù)訂多少個單位的午餐和晚餐?

4個單位的午餐和3個單位的晚餐,

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,已知點,點三邊圍成的區(qū)域(含邊界)上,且.
(1)若,求
(2)用表示,并求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

霧霾大氣嚴(yán)重影響人們生活,某科技公司擬投資開發(fā)新型節(jié)能環(huán)保產(chǎn)品,策劃部制定投資計劃時,不僅要考慮可能獲得的盈利,而且還要考慮可能出現(xiàn)的虧損,經(jīng)過市場調(diào)查,公司打算投資甲、乙兩個項目,根據(jù)預(yù)測,甲、乙項目可能的最大盈利率分別為100%和60%,可能的最大虧損率分別為20%和10%,投資人計劃投資金額不超過10萬元要求確保可能的資金虧損不超過1.6萬元.
(1)若投資人用萬元投資甲項目,萬元投資乙項目,試寫出、所滿足的條件,并在直角坐標(biāo)系內(nèi)做出表示、范圍的圖形;
(2)根據(jù)(1)的規(guī)劃,投資公司對甲、乙兩個項目投資多少萬元,才能是可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某公司利用A、B兩種原料生產(chǎn)甲、乙兩種產(chǎn)品,每生產(chǎn)1噸產(chǎn)品所需要的原料及利潤如下表所示:

 
A種原料(單位:噸)
B種原料(單位:噸)
利潤(單位:萬元)
甲種產(chǎn)品
1
2
3
乙種產(chǎn)品
2
1
4
公司在生產(chǎn)這兩種產(chǎn)品的計劃中,要求每種產(chǎn)品每天消耗A、B原料都不超過12噸。求每天生產(chǎn)甲、乙兩種產(chǎn)品各多少噸,使公司獲得總利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

不等式的解集是(   )

A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若變量x,y滿足約束條件則z=x+2y的最小值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知α,β是三次函數(shù)f(x)=x3ax2+2bx(a,b∈R)的兩個極值點,且α∈(0,1),β∈(1,2),求動點(a,b)所在的區(qū)域面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)z=2x+y,式中變量滿足下列條件:求z的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

在等比數(shù)列{an}和等差數(shù)列{bn}中,a1=b1>0,a3=b3>0,a1≠a3,則a5與b5的大小關(guān)系為 (  )

A.a(chǎn)5>b5 B.a(chǎn)5<b5 
C.a(chǎn)5=b5 D.不確定 

查看答案和解析>>

同步練習(xí)冊答案