如圖,平面平面,是等腰直角三角形,,四邊形是直角梯形,∥AE,,,分別為的中點.
(1)求異面直線與所成角的大;
(2)求直線和平面所成角的正弦值.
(1) ,(2)
解析試題分析:(1)求空間角,一般利用空間向量解決.首先要建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,由平面平面及,運用面面垂直性質(zhì)定理,可得,這樣確定豎坐標(biāo).橫坐標(biāo)與縱坐標(biāo)可根據(jù)右手系建立.因為異面直線與所成角等于向量與夾角或其補角,而異面直線與所成角范圍為,所以 ,(2) 直線和平面所成角與向量與平面法向量夾角互余或相差,而直線和平面所成角范圍為,所以.
試題解析:
∵,又∵面面,面面,
,∴,∵BD∥AE,∴, 2分
如圖所示,以C為原點,分別以CA,CB為x,y軸,以過點C且與平面ABC垂直的直線為z軸,建立空間直角坐標(biāo)系,∵,∴設(shè)各點坐標(biāo)為,,,,,
則,,,
,,.
(1),
則與所成角為. 5分
(2)設(shè)平面ODM的法向量,則由,且可得
令,則,,∴,設(shè)直線CD和平面ODM所成角為,則
,
∴直線CD和平面ODM所成角的正弦值為. 10分
考點:利用空間向量求異面直線所成角及直線與平面所成角.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.過A作AF⊥SB,垂足為F,點E,G分別是棱SA,SC的中點.
求證:(1)平面EFG∥平面ABC;(2)BC⊥SA.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐PABCD中,PA⊥底面ABCD,PC⊥AD,底面ABCD為梯形,AB∥DC,AB⊥BC,PA=AB=BC,點E在棱PB上,且PE=2EB.
(1)求證:平面PAB⊥平面PCB;
(2)求證:PD∥平面EAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.
(1)求證:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求點B到平面MAC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在長方體中,,點是棱上的一個動點.
(1)證明:;
(2)當(dāng)為的中點時,求點到面的距離;
(3)線段的長為何值時,二面角的大小為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com