如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.
(1)求證:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求點(diǎn)B到平面MAC的距離.
(1)詳見解析;(2);(3)
解析試題分析:(1)先根據(jù)線面垂直的判定定理證PC⊥平面ABC,即可證得PC⊥AC。(2)用空間向量法求二面角。先過C作BC的垂線,建立空間直角坐標(biāo)系,再求各點(diǎn)的坐標(biāo),和各向量的坐標(biāo),再根據(jù)向量垂直的數(shù)量積公式求面的法向量,但需注意兩法向量所成的角和二面角相等或互補(bǔ)。(3)在(2)中已求出面的一個法向量,根據(jù)可求其距離。
試題解析:解:(1)證明:∵PC⊥BC,PC⊥AB,∴PC⊥平面ABC,∵∴PC⊥AC. 2分
(2)在平面ABC內(nèi),過C作BC的垂線,并建立空間直角坐標(biāo)系如圖所示.
設(shè)P(0,0,z),則.
.
∵,
且z>0,∴,得z=1,∴.
設(shè)平面MAC的一個法向量為=(x,y,1),則由
得得 ∴.
平面ABC的一個法向量為.
.
顯然,二面角M﹣AC﹣B為銳二面角,∴二面角M﹣AC﹣B的余弦值為. 8分
(3)點(diǎn)B到平面MAC的距離. 12分
考點(diǎn):1線線垂直、線面垂直;2空間向量法解決立體幾何問題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐PABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=90°,且AB=2AD=2DC=2PD=4,E為PA的中點(diǎn).
(1)求證:DE∥平面PBC;
(2)求證:DE⊥平面PAB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐中S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.過A作AF⊥SB,垂足為F,點(diǎn)E,G分別是棱SA,SC的中點(diǎn).
求證:(1)平面EFG∥平面ABC;
(2)BC⊥SA.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.
(1)求證:BF∥平面ACE;
(2)求證:BF⊥BD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,平面平面,是等腰直角三角形,,四邊形是直角梯形,∥AE,,,分別為的中點(diǎn).
(1)求異面直線與所成角的大。
(2)求直線和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,矩形中,,,、分別為、邊上的點(diǎn),且,,將沿折起至位置(如圖2所示),連結(jié)、、,其中.
(Ⅰ)求證:平面;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示的長方體ABCD-A1B1C1D1中,底面ABCD是邊長為2的正方形,O為AC與BD的交點(diǎn),BB1=,M是線段B1D1的中點(diǎn).
(1)求證:BM∥平面D1AC;
(2)求證:D1O⊥平面AB1C;
(3)求二面角B-AB1-C的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com