已知a是非負(fù)實(shí)數(shù),則函數(shù)f(x)=
1
|a•2x+1|
-2的圖象不可能是( 。
A、
B、
C、
D、
考點(diǎn):函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用實(shí)數(shù)a分類討論a是否為0,利用有限與無限的思想,判斷函數(shù)值,即可得到結(jié)果.
解答:解:而
1
|a•2x+1|
>0,
∴函數(shù)f(x)=
1
|a•2x+1|
-2的圖象在x軸下方,
∴B正確.
A=0時(shí)D正確.
由a是實(shí)數(shù),函數(shù)f(x)=
1
|a•2x+1|
-2
∴當(dāng)a→0時(shí),y→-1,
當(dāng)a≠0時(shí),
由無限的思想可知,
當(dāng)x→+∞時(shí),y→-2,
當(dāng)x→-∞時(shí),y→-1,
∴滿足題目要求的圖象,A、B、D.
故選:C.
點(diǎn)評(píng):本題考查函數(shù)的圖象的判斷,注意有限與無限思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=t-3
y=
3
t
 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2-4ρcosθ=0.
(Ⅰ)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)P是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=a|x|與y=sinax(a>0且a≠1)在同一直角坐標(biāo)系下的圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司的一品牌電子產(chǎn)品,2013年年初,由于市場疲軟,產(chǎn)品銷售量逐漸下降,五月份公司加大了宣傳力度,銷售量出現(xiàn)明顯的回升,九月份,公司借大學(xué)生開學(xué)之機(jī),采取了促銷等手段,產(chǎn)品的銷售量猛增,十一月份之后,銷售量有所回落.下面大致能反映出公司2013年該產(chǎn)品銷售量的變化情況的圖象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(x-1)sinx,x∈[-π,π]的圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x、y滿足|x-1|+lny=0,則y關(guān)于x的函數(shù)的圖象大致形狀是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2cosx部分圖象可以為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=(x+a)(|x-a|+|x-4|)的圖象是中心對(duì)稱圖形,則a=(  )
A、4
B、-
4
3
C、2
D、-
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在基本框圖中,矩形表示( 。
A、起止框B、輸入輸出框
C、處理框D、判斷框

查看答案和解析>>

同步練習(xí)冊(cè)答案