函數(shù)y=a|x|與y=sinax(a>0且a≠1)在同一直角坐標(biāo)系下的圖象可能是( 。
A、
B、
C、
D、
考點(diǎn):函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:結(jié)合函數(shù)圖象的對折變換法則和正弦型函數(shù)的伸縮變換,分當(dāng)a>1時和當(dāng)0<a<1時兩種情況,分析兩個函數(shù)的圖象,比照后,可得答案.
解答:解:當(dāng)a>1時,函數(shù)y=a|x|與y=sinax(a>0且a≠1)在同一直角坐標(biāo)系下的圖象為:

當(dāng)0<a<1時,函數(shù)y=a|x|與y=sinax(a>0且a≠1)在同一直角坐標(biāo)系下的圖象為:

比照后,發(fā)現(xiàn)D滿足第一種情況,
故選D
點(diǎn)評:本題考查的知識點(diǎn)是函數(shù)的圖象,其中熟練掌握函數(shù)圖象的對折變換及伸縮變換是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為l:
x=1+t
y=t
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,曲線C:ρ=
8cosθ
1-cos2θ
.直線l被曲線C截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

長為3的線段兩端點(diǎn)A,B分別在x軸正半軸和y軸的正半軸上滑動,
BA
=3
PA
,點(diǎn)P的軌跡為曲線C.
(1)以直線AB的傾斜角α為參數(shù),求曲線C的參數(shù)方程;
(2)求點(diǎn)P到點(diǎn)D(0,-2)距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=1-
2
2
t
y=4-
2
2
t
(t為參數(shù)).再以原點(diǎn)為極點(diǎn),以x正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系xOy有相同的長度單位.在該極坐標(biāo)系中圓C的方程為ρ=4sinθ.
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點(diǎn)A、B,若點(diǎn)M的坐標(biāo)為(-2,1),求|MA|+|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,圓C的圓心坐標(biāo)為C(2,
π
3
),半徑為2.以極點(diǎn)為原點(diǎn),極軸為x的正半軸,取相同的長度單位建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1-
3
2
t
y=
3
+
1
2
t
(t為參數(shù))
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)設(shè)l與圓C的交點(diǎn)為A,B,l與x軸的交點(diǎn)為P,求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)a>0時,函數(shù)f(x)=(x2-ax)ex的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2cosx,若f′(x)是f(x)的導(dǎo)函數(shù),則函數(shù)f′(x)在原點(diǎn)附近的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a是非負(fù)實(shí)數(shù),則函數(shù)f(x)=
1
|a•2x+1|
-2的圖象不可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)A、B、C三種不同型號的產(chǎn)品,新產(chǎn)品數(shù)量之比依次為k:5:3,現(xiàn)用分層抽樣的方法抽出一個容量為120的樣本,已知A種產(chǎn)品共抽取了24件,則C種型號產(chǎn)品抽取的件數(shù)為(  )
A、24B、30C、36D、40

查看答案和解析>>

同步練習(xí)冊答案