【題目】將函數(shù)f(x)=cos(ωx+φ)(ω>0,|φ|< )的圖象上的每一點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的一半,再將圖象向右平移 個單位長度得到函數(shù)y=sinx的圖象.
(1)直接寫出f(x)的表達(dá)式,并求出f(x)在[0,π]上的值域;
(2)求出f(x)在[0,π]上的單調(diào)區(qū)間.

【答案】
(1)解:由題意可得,把函數(shù)y=sinx的圖象向左平移 個單位長度得到y(tǒng)=sin(x+ )的圖象,

再把橫坐標(biāo)縮短為原來的2倍,可得y=sin( x+ )=cos[ ﹣( x+ )]=cos( x﹣ )的圖象,

∵0≤x≤π,∴ ,∴ ,∴ ,

當(dāng)x=0時(shí), ;當(dāng) 時(shí),f(x)=1


(2)解:令 ,k∈Z,解得 ,k∈Z,

所以單調(diào)遞增區(qū)間為 ,k∈Z;

同理單調(diào)遞減區(qū)間為 ,k∈Z,

∵x∈[0,π],∴f(x)的單調(diào)遞增區(qū)間為 ,單調(diào)遞減區(qū)間為


【解析】(1)利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的定義域和值域,得出結(jié)論.(2)根據(jù)f(x)的解析式,以及正弦函數(shù)的單調(diào)性,得出結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識,掌握圖象上所有點(diǎn)向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: 的右焦點(diǎn)F( ),過點(diǎn)F作平行于y軸的直線截橢圓C所得的弦長為 . (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)(1,0)的直線l交橢圓C于P,Q兩點(diǎn),N點(diǎn)在直線x=﹣1上,若△NPQ是等邊三角形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|xex|,方程f2(x)+tf(x)+1=0(t∈R)有四個實(shí)數(shù)根,則t的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)n∈N* , n≥3,k∈N*
(1)求值: ①kCnk﹣nCn1k1;
(k≥2);
(2)化簡:12Cn0+22Cn1+32Cn2+…+(k+1)2Cnk+…+(n+1)2Cnn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)f(x)=sin(x﹣)sin(x+),有下列命題:
①此函數(shù)可以化為f(x)=﹣sin(2x+);
②函數(shù)f(x)的最小正周期是π,其圖象的一個對稱中心是( , 0);
③函數(shù)f(x)的最小值為﹣ , 其圖象的一條對稱軸是x=;
④函數(shù)f(x)的圖象向右平移個單位后得到的函數(shù)是偶函數(shù);
⑤函數(shù)f(x)在區(qū)間(﹣ , 0)上是減函數(shù).
其中所有正確的命題的序號個數(shù)是( 。
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生寒假期間學(xué)習(xí)情況,學(xué)校對某班男、女學(xué)生學(xué)習(xí)時(shí)間進(jìn)行調(diào)查,學(xué)習(xí)時(shí)間按整小時(shí)統(tǒng)計(jì),調(diào)查結(jié)果繪成折線圖如下:
(Ⅰ)已知該校有400名學(xué)生,試估計(jì)全校學(xué)生中,每天學(xué)習(xí)不足4小時(shí)的人數(shù);
(Ⅱ)若從學(xué)習(xí)時(shí)間不少于4小時(shí)的學(xué)生中選取4人,設(shè)選到的男生人數(shù)為X,求隨機(jī)變量X的分布列;
(Ⅲ)試比較男生學(xué)習(xí)時(shí)間的方差 與女生學(xué)習(xí)時(shí)間方差 的大。ㄖ恍鑼懗鼋Y(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC 中,角A、B、C所對的邊分別為a、b、c,且cosA=
①求 的值.
②若 ,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]已知曲線C的極坐標(biāo)方程是ρ=2cosθ,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線L的參數(shù)方程是 (t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程和直線L的普通方程;
(2)設(shè)點(diǎn)P(m,0),若直線L與曲線C交于A,B兩點(diǎn),且|PA||PB|=1,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動,得到如下的列聯(lián)表:

計(jì)

愛好

40

20

60

不愛好

20

30

50

計(jì)

60

50

110

根據(jù)上述數(shù)據(jù)能得出的結(jié)論是(
(參考公式與數(shù)據(jù):X2= .當(dāng)X2>3.841時(shí),有95%的把握說事件A與B有關(guān);當(dāng)X2>6.635時(shí),有99%的把握說事件A與B有關(guān); 當(dāng)X2<3.841時(shí)認(rèn)為事件A與B無關(guān).)
A.有99%的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”
B.有99%的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)”
C.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”
D.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)”.

查看答案和解析>>

同步練習(xí)冊答案