【題目】已知P(﹣2,3)是函數(shù)y= 圖象上的點(diǎn),Q是雙曲線在第四象限這一分支上的動(dòng)點(diǎn),過點(diǎn)Q作直線,使其與雙曲線y= 只有一個(gè)公共點(diǎn),且與x軸、y軸分別交于點(diǎn)C、D,另一條直線y= x+6與x軸、y軸分別交于點(diǎn)A、B.則
(1)O為坐標(biāo)原點(diǎn),三角形OCD的面積為 .
(2)四邊形ABCD面積的最小值為 .
【答案】
(1)12
(2)48
【解析】解:(1.)∵P(﹣2,3)是函數(shù)y= 圖象上的點(diǎn), 故k=﹣6,即y= ,則y′= ,
設(shè)Q是雙曲線在第四象限這一分支上的動(dòng)點(diǎn)(a, ),(a>0),
則由題意得直線CD與雙曲線在第四象限這一分支相切,
故直線CD的方程為:y+ = (x﹣a),
令y=0,可得x=2a,即C點(diǎn)坐標(biāo)為(2a,0),
令x=0,可得y=﹣ ,即D點(diǎn)坐標(biāo)為(0,﹣ ),
故三角形OCD的面積S△OCD= ×2a× =12,
(2.)∵直線y= x+6與x軸、y軸分別交于點(diǎn)A、B,
則A(﹣4,0),B(0,6),
故四邊形ABCD面積S=S△OAB+S△OBC+S△OCD+S△OAD= ×4×6+ ×2a×6+ ×4× +12=24+6a+ ≥24+2 =48,
即四邊形ABCD面積的最小值為48,
所以答案是:12,48
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的最值及其幾何意義的相關(guān)知識,掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲担
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= 的定義域?yàn)椋?/span> )
A.[0,1)
B.[0,2)
C.(1,2)
D.[0,1)∪(1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中直線的傾斜角為,且經(jīng)過點(diǎn),以坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線相交于兩點(diǎn),過點(diǎn)的直線與曲線相交于兩點(diǎn),且.
(1)平面直角坐標(biāo)系中,求直線的一般方程和曲線的標(biāo)準(zhǔn)方程;
(2)求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,在區(qū)間(0,2)上為增函數(shù)的是( )
A.y=3﹣x
B.y=x2+1
C.y=
D.y=﹣x2+1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的準(zhǔn)線為,焦點(diǎn)為, 為坐標(biāo)原點(diǎn).
(1)求過點(diǎn),且與相切的圓的方程;
(2)過的直線交拋物線于兩點(diǎn), 關(guān)于軸的對稱點(diǎn)為,求證:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD= .
(Ⅰ)求證:AE∥平面DCF;
(Ⅱ)當(dāng)AB的長為何值時(shí),二面角A﹣EF﹣C的大小為60°?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x,y滿足約束條件 ,當(dāng)目標(biāo)函數(shù)z=ax+by(a>0,b>0)在該約束條件下取到最小值2 時(shí),a2+b2的最小值為( )
A.5
B.4
C.
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著生活水平的提高,人們對空氣質(zhì)量的要求越來越高,某機(jī)構(gòu)為了解公眾對“車輛限行”的態(tài)度,隨機(jī)抽查人,并將調(diào)查情況進(jìn)行整理后制成下表:
年齡(歲) | |||||
頻數(shù) | |||||
贊成人數(shù) |
(1)完成被調(diào)查人員年齡的頻率分布直方圖,并求被調(diào)査人員中持贊成態(tài)度人員的平均年齡約為多少歲?
(2)若從年齡在的被調(diào)查人員中各隨機(jī)選取人進(jìn)行調(diào)查.請寫出所有的基本亊件,并求選取人中恰有人持不贊成態(tài)度的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱中,側(cè)面為矩形, , , 為的中點(diǎn), 與交于點(diǎn), 側(cè)面.
(1)證明: ;
(2)若,求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com