【題目】隨著生活水平的提高,人們對空氣質量的要求越來越高,某機構為了解公眾對“車輛限行”的態(tài)度,隨機抽查,并將調查情況進行整理后制成下表:

年齡(歲)

頻數(shù)

贊成人數(shù)

(1)完成被調查人員年齡的頻率分布直方圖,并求被調査人員中持贊成態(tài)度人員的平均年齡約為多少歲?

(2)若從年齡在的被調查人員中各隨機選取人進行調查.請寫出所有的基本亊件,并求選取人中恰有人持不贊成態(tài)度的概率.

【答案】(1)42.6歲;(2).

【解析】試題分析:(1)依次求出個小組的頻率/組距,進而完成直方圖;

(2)用古典概型的原理列舉出基本事件求概率即可.

試題解析:

(1)被調查人員年齡的頻率分布直方圖如圖所示:

被調查人員持贊成態(tài)度人的平均年齡約為(歲).

(2)設中贊成的人分別為,不贊成的人為,

中贊成的人分別為,不贊成的人為.基本事件為:

,

,

基本事件共有個,其中恰有人持不贊成態(tài)度的基本事件為個.據(jù)古典概型知:恰有人持不贊成態(tài)度的概率.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=loga(x+1),(a>0,a≠1)的圖象經(jīng)過點(﹣ ,﹣2),圖象上有三個點A,B,C,它們的橫坐標依次為t﹣1,t,t+1,(t≥1),記三角形ABC的面積為S(t),

(1)求f(x)的表達式;
(2)求S(1);
(3)是否存在正整數(shù)m,使得對于一切不小于1的t,都有S(t)<m,若存在求的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知P(﹣2,3)是函數(shù)y= 圖象上的點,Q是雙曲線在第四象限這一分支上的動點,過點Q作直線,使其與雙曲線y= 只有一個公共點,且與x軸、y軸分別交于點C、D,另一條直線y= x+6與x軸、y軸分別交于點A、B.則
(1)O為坐標原點,三角形OCD的面積為
(2)四邊形ABCD面積的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ) 證明:PA⊥BD;
(Ⅱ) 設PD=AD=1,求直線PC與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.
(1)若AB,求實數(shù)m的取值范圍;
(2)若A∩B=,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司制定了一個激勵銷售人員的獎勵方案:當銷售利潤不超過8萬元時,按銷售利潤的15%進行獎勵;當銷售利潤超過8萬元時,若超出A萬元,則超出部分按log5(2A+1)進行獎勵.記獎金為y(單位:萬元),銷售利潤為x(單位:萬元).
(1)寫出獎金y關于銷售利潤x的關系式;
(2)如果業(yè)務員小江獲得3.2萬元的獎金,那么他的銷售利潤是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的不等式:|2x﹣m|≤1的整數(shù)解有且僅有一個值為2.
(1)求整數(shù)m的值;
(2)在(1)的條件下,解不等式:|x﹣1|+|x﹣3|≥m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列{an}的前n項和為Sn , 已知a3=24,a6=18.
(Ⅰ) 求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{an}的前n項和Sn;
(Ⅲ)當n為何值時,Sn最大,并求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠的污水處理程序如下:原始污水必先經(jīng)過A系統(tǒng)處理,處理后的污水(A級水)達到環(huán)保標準(簡稱達標)的概率為.經(jīng)化驗檢測,若確認達標便可直接排放;若不達標則必須進行B系統(tǒng)處理后直接排放.

某廠現(xiàn)有個標準水量的A級水池,分別取樣、檢測. 多個污水樣本檢測時,既可以逐個化驗,也可以將若干個樣本混合在一起化驗.混合樣本中只要有樣本不達標,則混合樣本的化驗結果必不達標.若混合樣本不達標,則該組中各個樣本必須再逐個化驗;若混合樣本達標,則原水池的污水直接排放.

現(xiàn)有以下四種方案,

方案一:逐個化驗;

方案二:平均分成兩組化驗;

方案三:三個樣本混在一起化驗,剩下的一個單獨化驗;

方案四:混在一起化驗.

化驗次數(shù)的期望值越小,則方案的越“優(yōu)”.

(Ⅰ) 若,求個A級水樣本混合化驗結果不達標的概率;

(Ⅱ) 若,現(xiàn)有個A級水樣本需要化驗,請問:方案一,二,四中哪個最“優(yōu)”?

(Ⅲ) 若“方案三”比“方案四”更“優(yōu)”,求的取值范圍.

查看答案和解析>>

同步練習冊答案