【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

(1)求曲線和直線在該直角坐標(biāo)系下的普通方程;

(2)動(dòng)點(diǎn)在曲線上,動(dòng)點(diǎn)在直線上,定點(diǎn)的坐標(biāo)為,求的最小值.

【答案】(1) 曲線的普通方程為;直線的方程是.

(2) .

【解析】

試題分析:(1)消去參數(shù),根據(jù)三角函數(shù)的基本關(guān)系式,即可得到曲線的普通方程;利用極坐標(biāo)與直角坐標(biāo)的對應(yīng)關(guān)系得到直線的普通方程;(2)求出點(diǎn)關(guān)于直線的對稱點(diǎn),則的最小為到圓心的距離減去曲線的半徑.

試題解析:(1)由曲線的參數(shù)方程可得

所以曲線的普通方程為

由直線的極坐標(biāo)方程:,可得,即

2)設(shè)點(diǎn)關(guān)于直線的對稱點(diǎn)為,有:,解得:

由(1)知,曲線為圓,圓心坐標(biāo)為,故

當(dāng)四點(diǎn)共線時(shí),且之間時(shí),等號(hào)成立,所以的最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】( 本小題滿分14)

如圖,在三棱錐PABC中,PC底面ABC,ABBC,D,E分別是AB,PB的中點(diǎn).

(1)求證:DE平面PAC

(2)求證:ABPB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC,a=7,b=8,cosB= –

A;

AC邊上的高

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校某研究性學(xué)習(xí)小組在對學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)y與聽課時(shí)間x(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當(dāng)x∈(0,12]時(shí),圖象是二次函數(shù)圖象的一部分,其中頂點(diǎn)A(10,80),過點(diǎn)B(12,78);當(dāng)x∈[12,40]時(shí),圖象是線段BC,其中C(40,50).根據(jù)專家研究,當(dāng)注意力指數(shù)大于62時(shí),學(xué)習(xí)效果最佳.

(1)試求y=f(x)的函數(shù)關(guān)系式;

(2)教師在什么時(shí)段內(nèi)安排內(nèi)核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ,且的極值點(diǎn).

(Ⅰ) 的極大值點(diǎn),求的單調(diào)區(qū)間(用表示);

(Ⅱ)恰有1解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,設(shè)

(Ⅰ)求函數(shù)的定義域,判斷的奇偶性,并說明理由;

(Ⅱ)若,求使成立的的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠修建一個(gè)長方體無蓋蓄水池,其容積為4 800立方米,深度為3米.池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元.設(shè)池底長方形長為x米.

1)求底面積,并用含x的表達(dá)式表示池壁面積;

2)怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),(為常數(shù)),.曲線在點(diǎn)處的切線與軸平行

(1)的值;

(2)的單調(diào)區(qū)間和最小值;

(3)對任意恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的奇函數(shù)

(1)求實(shí)數(shù)的值;

(2)判斷的單調(diào)性,并證明.

(3)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案