【題目】ABC,a=7,b=8,cosB= –

A;

AC邊上的高

【答案】(1)A=

(2) AC邊上的高為

【解析】分析:(1)先根據(jù)平方關(guān)系求sinB,再根據(jù)正弦定理求sinA,即得A;(2)根據(jù)三角形面積公式兩種表示形式列方程,再利用誘導(dǎo)公式以及兩角和正弦公式求,解得AC邊上的高

詳解:解(Ⅰ)在△ABC中,∵cosB=–,∴B∈(,π),∴sinB=

由正弦定理得 =,∴sinA=

B∈(,π),∴A∈(0,),∴∠A=

Ⅱ)在ABC,∵sinC=sin(A+B)=sinAcosB+sinBcosA==

如圖所示,在△ABC中,∵sinC=,h==,

AC邊上的高為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,已知點(diǎn),直線:為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線和曲線的交點(diǎn)為,

(1)求直線和曲線的普通方程;

(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)對(duì)于實(shí)數(shù),若,有,求證:方程有兩個(gè)不相等的實(shí)數(shù)根;

2)若,函數(shù),求函數(shù)在區(qū)間上的最大值和最小值;

3)若存在實(shí)數(shù),使得對(duì)于任意實(shí)數(shù),都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐PABCD中,ABCD是矩形,PA=AB,EPB的中點(diǎn).

1)若過(guò)C,D,E的平面交PA于點(diǎn)F,求證:FPA的中點(diǎn);

2)若平面PAB⊥平面PBC,求證:BCPA

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】北京、張家口2022年冬奧會(huì)申辦委員會(huì)在俄羅斯索契舉辦了發(fā)布會(huì),某公司為了競(jìng)標(biāo)配套活動(dòng)的相關(guān)代言,決定對(duì)旗下的某商品進(jìn)行一次評(píng)估,該商品原來(lái)每件售價(jià)為25元,年銷售8萬(wàn)件.

(1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?

(2)為了抓住申奧契機(jī),擴(kuò)大該商品的影響力,提高年銷售量.公司決定立即對(duì)該商品進(jìn)行全面技術(shù)革新和營(yíng)銷策略改革,并提高定價(jià)到元.公司擬投入萬(wàn)作為技改費(fèi)用,投入50萬(wàn)元作為固定宣傳費(fèi)用,投入萬(wàn)元作為浮動(dòng)宣傳費(fèi)用.試問(wèn):當(dāng)該商品改革后的銷售量至少應(yīng)達(dá)到多少萬(wàn)件時(shí),才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為推導(dǎo)球的體積公式,劉徽制造了一個(gè)牟合方蓋(在一個(gè)正方體內(nèi)作兩個(gè)互相垂直的內(nèi)切圓柱,這兩個(gè)圓柱的公共部分叫做牟合方蓋),但沒(méi)有得到牟合方蓋的體積.200年后,祖暅給出牟合方蓋的體積計(jì)算方法,其核心過(guò)程被后人稱為祖暅原理:緣冪勢(shì)既同,則積不容異.意思是,夾在兩個(gè)平行平面間的兩個(gè)幾何體被平行于這兩個(gè)平行平面的任意平面所截,如果截面的面積總相等,那么這兩個(gè)幾何體的體積也相等.現(xiàn)在截取牟合方蓋的八分之一,它的外切正方體的棱長(zhǎng)為1,如圖所示,根據(jù)以上信息,則該牟合方蓋的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),直線,為平面上的動(dòng)點(diǎn),過(guò)點(diǎn)作直線的垂線,垂足為,且滿足

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)過(guò)點(diǎn)作直線與軌跡交于,兩點(diǎn),為直線上一點(diǎn),且滿足,若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)增區(qū)間;

(2)若函數(shù)有兩個(gè)極值點(diǎn),且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,且,等比數(shù)列的首項(xiàng)為1,公比為),且,,成等差數(shù)列.

(1)求的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

同步練習(xí)冊(cè)答案