14.設(shè)數(shù)列{an}滿足:a1=1,an=e2an+1(n∈N*),$\frac{5}{2}$-$\frac{f(n)}{\underset{\stackrel{n}{Π}}{i=1}{a}_{i}}$=n,其中符號(hào)Π表示連乘,如$\underset{\stackrel{5}{Π}}{i=1}$i=1×2×3×4×5,則f(n)的最小值為-$\frac{1}{2{e}^{6}}$.

分析 a1=1,an=e2an+1(n∈N*),可得an=e-2(n-1).$\frac{5}{2}$-$\frac{f(n)}{\underset{\stackrel{n}{Π}}{i=1}{a}_{i}}$=n,化為:f(n)=$(\frac{5}{2}-n)$${e}^{-2×\frac{n(n-1)}{2}}$=$(\frac{5}{2}-n)$${e}^{-{n}^{2}+n}$.考查函數(shù)f(x)=$(\frac{5}{2}-x)$${e}^{-{x}^{2}+x}$的單調(diào)性,利用導(dǎo)數(shù)研究其單調(diào)性即可得出.

解答 解:∵a1=1,an=e2an+1(n∈N*),∴an=e-2(n-1)
$\frac{5}{2}$-$\frac{f(n)}{\underset{\stackrel{n}{Π}}{i=1}{a}_{i}}$=n,化為:f(n)=$(\frac{5}{2}-n)$${e}^{-2×\frac{n(n-1)}{2}}$=$(\frac{5}{2}-n)$${e}^{-{n}^{2}+n}$.
考查函數(shù)f(x)=$(\frac{5}{2}-x)$${e}^{-{x}^{2}+x}$,f′(x)=$\frac{1}{2}$(4x2-12x+3)•${e}^{-{x}^{2}+x}$,令f′(x)=0,解得x1=$\frac{3-\sqrt{6}}{2}$,x2=$\frac{3+\sqrt{6}}{2}$,
∴0<x1<1,2<x1<3.
當(dāng)x<x1時(shí),f′(x)>0;當(dāng)x1<x<x2時(shí),f′(x)<0;
當(dāng)x>x2時(shí),f′(x)>0.即f(x)在(-∞,x1),(x2,+∞)單調(diào)遞增,在(x1,x2)上單調(diào)遞減,
∴h(x)min=h(x2),即f(n)min=min{f(2),f(3)},f(2)=$\frac{1}{2{e}^{2}}$>f(3)=-$\frac{1}{2{e}^{6}}$.
∴f(n)min=f(3)=-$\frac{1}{2{e}^{6}}$.
故答案為:-$\frac{1}{2{e}^{6}}$.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓E的方程是$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,左、右焦點(diǎn)分別是F1、F2,在橢圓E上有一動(dòng)點(diǎn)A,過A、F1作一個(gè)平行四邊形,使頂點(diǎn)A、B、C、D都在橢圓E上,如圖所示.
(Ⅰ) 判斷四邊形ABCD能否為菱形,并說明理由.
(Ⅱ) 當(dāng)四邊形ABCD的面積取到最大值時(shí),判斷四邊形ABCD的形狀,并求出其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.2015年12月,京津冀等地?cái)?shù)城市指數(shù)“爆表”,北方此輪污染為2015年以來最嚴(yán)重的污染過程.為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時(shí)間段車流量與PM2.5的數(shù)據(jù)如表:
時(shí)間星期一星期二星期三星期四星期五星期六星期七
車流量x(萬輛)1234567
PM2.5的濃度y(微克/立方米)28303541495662
(Ⅰ)由散點(diǎn)圖知y與x具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;
(Ⅱ)(ⅰ)利用(Ⅰ)所求的回歸方程,預(yù)測(cè)該市車流量為8萬輛時(shí)PM2.5的濃度;
(ⅱ)規(guī)定:當(dāng)一天內(nèi)PM2.5的濃度平均值在(0,50]內(nèi),空氣質(zhì)量等級(jí)為優(yōu);當(dāng)一天內(nèi)PM2.5的濃度平均值在(50,100]內(nèi),空氣質(zhì)量等級(jí)為良.為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車流量在多少萬輛以內(nèi)?(結(jié)果以萬輛為單位,保留整數(shù).)
參考公式:回歸直線的方程是$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2. 如圖,四邊形PDCE為矩形,四邊形ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=$\frac{1}{2}$CD=1.
(Ⅰ)若M為PA的中點(diǎn),求證:AC∥平面MDE;
(Ⅱ)若PB與平面ABCD所成角為45°,求點(diǎn)D到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≥0}\\{x+y≤0}\\{2x+y+2≤0}\end{array}\right.$且ax-y+1-a=0,則實(shí)數(shù)a的取值范圍是( 。
A.[-$\frac{1}{3}$,1)B.[-1,$\frac{1}{2}$]C.(-1,$\frac{1}{2}$]D.[-$\frac{1}{3}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.現(xiàn)有1000根某品種的棉花纖維,從中隨機(jī)抽取50根,纖維長(zhǎng)度(單位:mm)的數(shù)據(jù)分組及各組的頻數(shù)如表,據(jù)此估計(jì)這1000根中纖維長(zhǎng)度不小于37.5mm的根數(shù)是180.
纖維長(zhǎng)度頻數(shù)
[22.5,25.5)3
[25.5,28.5)8
[28.5,31.5)9
[31.5,34.5)11
[34.5,37.5)10
[37.5,40.5)5
[40.5,43.5]4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若平面α,β,γ中,α⊥β,則“γ⊥β”是“α∥γ”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知拋物線C:y2=8x,直線l:y=$\frac{{\sqrt{3}}}{3}$(x-2),直線l交C于A,B兩點(diǎn),則|AB|等于( 。
A.16B.$16\sqrt{3}$C.32D.$32\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.2017年2月20日,摩拜單車在濟(jì)南推出“做文明騎士,周一摩拜單車免費(fèi)騎”活動(dòng),為了解單車使用情況,記者隨機(jī)抽取了五個(gè)投放區(qū)域,統(tǒng)計(jì)了半小時(shí)內(nèi)被騎走的單車數(shù)量,繪制了如圖所示的莖葉圖,則該組數(shù)據(jù)的方差為( 。
A.9B.4C.3D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案