A. | 8<a<10 | B. | 2$\sqrt{2}<a<\sqrt{10}$ | C. | $2\sqrt{2}<a<10$ | D. | $\sqrt{10}<a<8$ |
分析 由已知中△ABC三邊長分別為1、3、a,根據(jù)余弦定理的推論得到△ABC為銳角三角形時,由兩邊長1和3求出a的范圍,但3與a邊均有可能為最大邊,故要分類討論.
解答 解:∵△ABC三邊長分別為1、3、a,
又∵△ABC為銳角三角形,
當3為最大邊時3≥a,設3所對的角為α,
則根據(jù)余弦定理得:cosα=$\frac{{a}^{2}+1-{3}^{2}}{2a}$>0,
∵a>0,
∴a2-8>0,
解得3≥a>2$\sqrt{2}$;
當a為最大邊時a>3,設a所對的角為β,
則根據(jù)余弦定理得:cosβ=$\frac{1+9-{a}^{2}}{6}$>0,
∴10-a2>0,
解得:3<a<$\sqrt{10}$,
綜上,實數(shù)a的取值范圍為(2$\sqrt{2}$,$\sqrt{10}$).
故選:B.
點評 本題考查了三角形的形狀判斷,以及余弦定理的應用,利用了分類討論的思想.解答本題的關鍵是利用余弦定理推論出最大邊所對角的余弦值大于0,進而根據(jù)兩邊長1和2求出第三邊a的取值范圍,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,+∞) | B. | [$\frac{1}{2}$,1] | C. | [$\frac{1}{2}$,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 16 | C. | 9 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=sin(x+$\frac{π}{12}$) | B. | y=sin(x-$\frac{π}{12}$) | C. | y=sin(x+$\frac{5π}{12}$) | D. | y=sin(x-$\frac{5π}{12}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com