科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù).
(1)當時,求的單調(diào)區(qū)間;
(2)若時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分16分)定義在的函數(shù)
(1)對任意的都有;
(2)當時,,回答下列問題:
①判斷在的奇偶性,并說明理由;
②判斷在的單調(diào)性,并說明理由;
③若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(I)若的一個極值點,求a的值;
(II)求證:當上是增函數(shù);
(III)若對任意的總存在成立,求實數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)如果存在,使函數(shù)在處取得最小值,試求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)若定義在上的函數(shù)同時滿足下列三個條件:
①對任意實數(shù)均有成立;
②; ③當時,都有成立。
(1)求,的值;
(2)求證:為上的增函數(shù)
(3)求解關(guān)于的不等式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
.(12分)已知函數(shù)在R上為奇函數(shù),,.
(I)求實數(shù)的值;
(II)指出函數(shù)的單調(diào)性.(不需要證明)
(III)設(shè)對任意,都有;是否存在的值,使最小值為;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com