【題目】進入冬季以來,我國北方地區(qū)的霧霾天氣持續(xù)出現(xiàn),極大的影響了人們的健康和出行,我市環(huán)保局對該市2015年進行為期一年的空氣質量監(jiān)測,得到每天的空氣質量指數(shù),從中隨機抽取50個作為樣本進行分析報告,樣本數(shù)據(jù)分組區(qū)間為(5,15],(15,25],(25,35],(35,45],由此得到樣本的空氣質量指數(shù)頻率分布直方圖,如圖.

(1)求a的值;
(2)如果空氣質量指數(shù)不超過15,就認定空氣質量為“特優(yōu)等級”,則從今年的監(jiān)測數(shù)據(jù)中隨機抽取3天的數(shù)值,其中達到“特優(yōu)等級”的天數(shù)為X.求X的分布列和數(shù)學期望.

【答案】
(1)解:由頻率分布直方圖中小矩形面積之和為1,

得:(0.02+0.032+a+0.018)×10=1,

解得a=0.03.


(2)解:利用樣本估計總體,該年度空所質量指數(shù)在(5,15]內為“特優(yōu)等級”,

且指數(shù)達到“特優(yōu)等級”的概率為0.2,

則X的取值為0,1,2,3,且X~B(3, ),

P(X=0)= = ,

P(X=1)= =

P(X=2)= =

P(X=3)= ,

∴X的分布列為:

X

0

1

2

3

P

∴EX=0× +1× +2× +3× =


【解析】(1)由頻率分布直方圖中小矩形面積之和為1,由此能求出a.(2)由已知得X的取值為0,1,2,3,且X~B(3, ),由此能求出X的分布列和EX.
【考點精析】認真審題,首先需要了解頻率分布直方圖(頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息),還要掌握離散型隨機變量及其分布列(在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內角A,B,C的對邊分別是,向量,且.

(1)求角B的值;

(2)若,且,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“牟合方蓋”是我國古代數(shù)學家劉徽在研究球的體積的過程中構造的一個和諧優(yōu)美的幾何體.它由完全相同的四個曲面構成,相對的兩個曲面在同一個圓柱的側面上,好似兩個扣合(牟合)在一起的方形傘(方蓋).其直觀圖如圖,圖中四邊形是為體現(xiàn)其直觀性所作的輔助線.當其主視圖和側視圖完全相同時,它的俯視圖可能是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)已知圓的圓心是直線軸的交點,且與直線相切,求圓的標準方程;

(2)已知圓,直線過點與圓相交于兩點,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過點C(3,4)且與軸,軸都相切的兩個圓的半徑分別為,則=______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列關于簡單幾何體的說法中正確的是( )

①有兩個面互相平行,其余各面都是平行四邊形的多面體是棱柱;

②有一個面是多邊形,其余各面都是三角形的幾何體是棱錐;

③在斜二測畫法中,與坐標軸不平行的線段的長度在直觀圖中有可能保持不變;

④有兩個底面平行且相似其余各面都是梯形的多面體是棱臺;

⑤空間中到定點的距離等于定長的所有點的集合是球面.

A. ③④⑤ B. ③⑤ C. ④⑤ D. ①②⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形中, = == 分別在上, ,現(xiàn)將四邊形沿折起,使.

(1)若,在折疊后的線段上是否存在一點,使得平面?若存在,求出的值;若不存在,說明理由;

(2)求三棱錐的體積的最大值,并求出此時點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知圓的圓心在直線上,且過點,與直線相切.

)求圓的方程

)設直線與圓相交于,兩點.求實數(shù)的取值范圍.

的條件下,是否存在實數(shù),使得弦的垂直平分線過點,若存在,求出實數(shù)的值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在下列命題中:
①存在一個平面與正方體的12條棱所成的角都相等;
②存在一個平面與正方體的6個面所成較小的二面角都相等;
③存在一條直線與正方體的12條棱所成的角都相等;
④存在一條直線與正方體的6個面所成的角都相等.
其中真命題的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習冊答案