分析 (1)根據(jù)身高X服從正態(tài)分布N(160,ξ2),計算出P(170≤X<180)的值即可;
(2)求出P(150≤X<170)的值,由ξ服從二項分布B(3,0.6),求出對應(yīng)的概率值,得出隨機變量ξ的分布列,計算Eξ即可.
解答 解:(1)全市高三學生身高X(單位:cm)服從正態(tài)分布N(160,ξ2),
已知P(X<150)=0.2,
P(160≤x<170)=P(150≤X<160)=0.5-0.2=0.3,
P(X≥180)=0.03;
所以P(170≤X<180)=0.5-0.3-0.03=0.17;
故從該市高三學生中隨機抽取一位學生,求該學生身高在區(qū)間[170,180)的概率為0.17;
(2)P(150≤X<170)=P(150≤X<160)+P(160≤X<170)=0.3+0.3=0.6,
所以ξ服從二項分布B(3,0.6),
P(ξ=0)=(1-0.6)3=0.064,
P(ξ=1)=3×0.6×(1-0.6)2=0.228,
P(ξ=2)=3×0.62×(1-0.6)=0.432,
P(ξ=3)=0.63=0.216,
所以隨機變量ξ的分布列是
ξ | 0 | 1 | 2 | 3 |
P | 0.064 | 0.288 | 0.432 | 0.216 |
點評 本題考查了離散型隨機就是的分布列和數(shù)學期望的應(yīng)用問題,解題時要注意二項分布的性質(zhì)的合理運用,是中檔題目.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{9}$ | B. | $\frac{4}{3}$ | C. | $\frac{3}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12 | B. | 9 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若T2n+1>0,則a1>0 | B. | 若T2n+1<0,則a1<0 | ||
C. | 若T3n+1<0,則a1>0 | D. | 若T4n+1<0,則a1<0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com