【題目】在直角坐標(biāo)系內(nèi),已知是圓上一點(diǎn),折疊該圓兩次使點(diǎn)分別與圓上不相同的兩點(diǎn)(異于點(diǎn))重合,兩次的折痕方程分別為和,若圓上存在點(diǎn),使,其中的坐標(biāo)分別為,則實(shí)數(shù)的取值集合為__________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,動(dòng)點(diǎn)P從單位正方形ABCD頂點(diǎn)A開(kāi)始,順次經(jīng)B、C、D繞邊界一周,當(dāng) 表示點(diǎn)P的行程, 表示PA之長(zhǎng)時(shí),求y關(guān)于x的解析式,并求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:關(guān)于x的方程x2﹣ax+4=0有實(shí)根;命題q:關(guān)于x的函數(shù)y=2x2+ax+4在[3,+∞)上是增函數(shù),若p∧q是真命題,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1) 判斷函數(shù)的單調(diào)性并給出證明;
(2)若存在實(shí)數(shù)使函數(shù)是奇函數(shù),求;
(3)對(duì)于(2)中的,若,當(dāng)時(shí)恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面ABCD是菱 形,PA=PB,且側(cè)面PAB⊥平面ABCD,點(diǎn)E是AB的中點(diǎn).
(1)求證:PE⊥AD;
(2)若CA=CB,求證:平面PEC⊥平面PAB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>,如果存在函數(shù),使得函數(shù)的值域仍是,那么稱是函數(shù)的一個(gè)等值域變換.
(1)判斷下列函數(shù)是不是函數(shù)的一個(gè)等值域變換?說(shuō)明你的理由;
①;
②.
(2)設(shè)的定義域?yàn)?/span>,已知是的一個(gè)等值域變換,且函數(shù)的定義域?yàn)?/span>,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (其中為自然對(duì)數(shù)的底數(shù), )
(1) 設(shè)函數(shù),討論函數(shù)的零點(diǎn)個(gè)數(shù);
(2) 若時(shí),不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ.
(1)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于M,N兩點(diǎn),點(diǎn)A(1,0),求 + 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的定義域?yàn)?/span>D,若存在閉區(qū)間 ,使得函數(shù)同時(shí)滿足:
(1)在內(nèi)是單調(diào)函數(shù);
(2)在上的值域?yàn)?/span>,則稱區(qū)間為的“倍值區(qū)間”.
下列函數(shù)中存在“3倍值區(qū)間”的有_____.
①;②;③;④.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com