分析 (Ⅰ)由題意可設橢圓標準方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),結(jié)合已知及隱含條件列關于a,b,c的方程組,求解方程組得到a2,b2的值,則橢圓方程可求;
(Ⅱ)設F(x0,y0),E(-x0,-y0),寫出AE、AF所在直線方程,求出M、N的坐標,得到以MN為直徑的圓的方程,由圓的方程可知以MN為直徑的圓經(jīng)過定點(±2,0),即可判斷存在點P.
解答 解:(Ⅰ)由題意可設橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),
則c=2,a2-b2=c2,$\frac{4}{{a}^{2}}$+$\frac{2}{^{2}}$=1,解得:a2=8,b2=4.
可得橢圓C的方程為$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1;
(Ⅱ)如圖,設F(x0,y0),E(-x0,-y0),則$\frac{{{x}_{0}}^{2}}{8}$+$\frac{{{y}_{0}}^{2}}{4}$=1,A(-2$\sqrt{2}$,0),
AF所在直線方程y=$\frac{{y}_{0}}{{x}_{0}+2\sqrt{2}}$(x+2$\sqrt{2}$),
取x=0,得y=$\frac{2\sqrt{2}{y}_{0}}{{x}_{0}+2\sqrt{2}}$,
∴N(0,$\frac{2\sqrt{2}{y}_{0}}{{x}_{0}+2\sqrt{2}}$),
AE所在直線方程為y=$\frac{{y}_{0}}{{x}_{0}-2\sqrt{2}}$(x+2$\sqrt{2}$),
取x=0,得y=$\frac{2\sqrt{2}{y}_{0}}{{x}_{0}-2\sqrt{2}}$.
則以MN為直徑的圓的圓心坐標為(0,$\frac{-2\sqrt{2}{x}_{0}{y}_{0}}{8-{{x}_{0}}^{2}}$),
半徑r=$\frac{4{y}_{0}}{8-{{x}_{0}}^{2}}$,
圓的方程為x2+(y-$\frac{-2\sqrt{2}{x}_{0}{y}_{0}}{8-{{x}_{0}}^{2}}$)2=$\frac{16{{y}_{0}}^{2}}{(8-{{x}_{0}}^{2})^{2}}$=$\frac{16}{{{y}_{0}}^{2}}$,即x2+(y+$\frac{\sqrt{2}{x}_{0}}{{y}_{0}}$)2=$\frac{16}{{{y}_{0}}^{2}}$.
取y=0,得x=±2.
可得以MN為直徑的圓經(jīng)過定點(±2,0).
可得在x軸上存在點P(±2,0),
使得無論非零實數(shù)k怎樣變化,總有∠MPN為直角.
點評 本題考查橢圓的方程和簡單性質(zhì),考查直線與圓位置關系的應用,考查整體運算思想方法,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {0,1,2) | B. | {-1,0,1,2,3} | C. | {0,1} | D. | {2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com