4.設(shè)函數(shù)f(x)=ax+3-|2x-1|.
(Ⅰ)若a=1,解不等式f(x)≤2;
(Ⅱ)若函數(shù)有最大值,求a的取值范圍.

分析 (Ⅰ)需要去掉絕對(duì)值,得到不等式解得即可,
(Ⅱ)把含所有絕對(duì)值的函數(shù),化為分段函數(shù),再根據(jù)函數(shù)f(x)有最大值的充要條件,即可求得.

解答 解:(Ⅰ)由題意得x≥$\frac{1}{2}$時(shí),不等式化為x+3-3x+1≤2,
解得:x≥2,
x<$\frac{1}{2}$時(shí),不等式化為x+3+2x-1≤2,解得:x≤0,
綜上,不等式的解集是(-∞,0]∪[2,+∞);
(Ⅱ)由題意得f(x)=$\left\{\begin{array}{l}{(a+2)x+2,x<\frac{1}{2}}\\{(a-2)x+4,x≥\frac{1}{2}}\end{array}\right.$,
函數(shù)有最大值的充要條件是a+2≥0且a-2≤0,
即-2≤a≤2.

點(diǎn)評(píng) 本題主要考查含有絕對(duì)值不等式的解法,關(guān)鍵是去絕對(duì)值,需要分類討論,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左頂點(diǎn)為A,左焦點(diǎn)為F1(-2,0),點(diǎn)B(2,$\sqrt{2}$)在橢圓C上,直線y=kx(k≠0)與橢圓C交于E,F(xiàn)兩點(diǎn),直線AE,AF分別與y軸交于點(diǎn)M,N
(Ⅰ)求橢圓C的方程;
(Ⅱ)在x軸上是否存在點(diǎn)P,使得無論非零實(shí)數(shù)k怎樣變化,總有∠MPN為直角?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|x-1|+|x-a|(a∈R).
(1)若a=4,求不等式f(x)≥5的解集;
(2)若存在x∈R,使f(x)≤4成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夾角為$\frac{π}{3}$的兩個(gè)單位向量,則$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$;$\overrightarrow$=-3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若集合A={x|-1<x<2},B={x|2x2-5x-3>0},則A∩B=( 。
A.{x|-1<x<-$\frac{1}{2}$,或2<x<3}B.{x|2<x<3}
C.{x|-$\frac{1}{2}$<x<2}D.{x|-1<x<-$\frac{1}{2}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x|x2-x-6>0),B={x|-1≤x≤4),則A∩B=(  )
A.[-l,3)B.(3,4]C.[-1,2)D.(2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.袋中有六張形狀、質(zhì)地等完全相同的卡片,其中紅色卡片四張,藍(lán)色卡片兩張,每張卡片都標(biāo)有一個(gè)數(shù)字,如莖葉圖所示:
(Ⅰ)從以上六張卡片中任取兩張,求這兩張卡片顏色相同的概率;
(Ⅱ)從以上六張卡片中任取兩張,求這兩張卡片數(shù)字之和小于50的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,在A,B,C,D,E五個(gè)區(qū)域中栽種3種植物,要求同一區(qū)域中只種1種植物,相鄰兩區(qū)域所種植物不同,則不同的栽種方法的總數(shù)為( 。
A.21B.24C.30D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.畫出不等式x2-y2-4x-2y+3≥0表示的平面區(qū)域.

查看答案和解析>>

同步練習(xí)冊(cè)答案