精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=ax2+(b-8)x-a-ab,當x∈(-∞,-3)∪(2,+∞)時,f(x)<0.當x∈(-3,2)時f(x)>0.
(Ⅰ)求f(x)在[0,1]內的值域;
(Ⅱ)若ax2+bx+c≤0的解集為R,求實數c的取值范圍..
分析:(Ⅰ)由題意得-3,2是方程ax2+(b-8)x-a-ab=0的兩根,故有
-3+2=-
b-8
a
-3×2=
-a-ab
a
,且a<0,解得a和b,然后再根據函數單調性解出函數在[0,1]內的值域即可;
(Ⅱ)在已知a和b的情況下,不等式ax2+bx+c≤0的解集為R,列式
a=-3<0
△=b2-4ac≤0
,可解出實數c的取值范圍.
解答:解:(Ⅰ)∵當x∈(-∞,-3)∪(2,+∞)時,f(x)<0.當x∈(-3,2)時f(x)>0
∴-3,2是方程ax2+(b-8)x-a-ab=0的兩根,
∴可得
-3+2=-
b-8
a
-3×2=
-a-ab
a
,所以  a=-3   b=5,
∴f(x)=-3x2-3x+18=-3(x+
1
2
2+18.75
函數圖象關于x=-0.5對稱,且拋物線開口向下
∴在區(qū)間[0,1]上f(x)為減函數,所以函數的最大值為f(0)=18,最小值為f(1)=12
故f(x)在[0,1]內的值域為[12,18]
(Ⅱ)由(I)知,不等式ax2+bx+c≤0化為:-3x2+5x+c≤0
因為二次函數y=:-3x2+5x+c的圖象開口向下,要使-3x2+5x+c≤0的解集為R,只需
a=-3<0
△=b2-4ac≤0
,
即 25+12c≤0?c≤-
25
12
,
∴實數c的取值范圍(-∞,-
25
12
]
點評:本題考查二次函數的性質,一元二次不等式的解法,屬于中檔題.將一元二次不等式和一元二次方程以和二次函數相聯系,采用數形結合的方法,是解決此種問題題的關鍵.
(I)采用一元二次方程根與系數關系,聯解二元方程組,問題得解;
(II)結合函數圖象,轉化為拋物線所有的點在x軸下方或在x軸上的問題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區(qū)二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案