(本小題滿分14分)已知?jiǎng)訄A過定點(diǎn),且與直線相切,橢圓的對稱軸為坐標(biāo)軸,一個(gè)焦點(diǎn)為,點(diǎn)在橢圓上.
(1)求動(dòng)圓圓心的軌跡的方程及橢圓的方程;
(2)若動(dòng)直線與軌跡在處的切線平行,且直線與橢圓交于兩點(diǎn),試求當(dāng)面積取到最大值時(shí)直線的方程.
(1) 軌跡的方程;橢圓方程為 (2)
【解析】
試題分析:(1)過圓心M作直線的垂線,垂足為H.
由題意得,|MH|=|MF|,由拋物線定義得,點(diǎn)M的軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,其方程為....................3分
設(shè)橢圓方程為,將點(diǎn)A代入方程整理得解得 .故所求的橢圓方程為...............5分
(2)軌跡的方程為,即.
則,所以軌跡在處的切線斜率為,......7分
設(shè)直線方程為,代入橢圓方程得
因?yàn)?,解得;............9分
設(shè)
所以
點(diǎn)A到直線的距離為................12分.
所以
當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,此時(shí)直線的方程為
..................................14分
考點(diǎn):圓的簡單性質(zhì);橢圓的簡單性質(zhì);軌跡方程的求法;直線與圓錐曲線的綜合問題.
點(diǎn)評:求軌跡方程的一般方法:直接法、定義法、相關(guān)點(diǎn)法、參數(shù)法、交軌法、向量法等。本題求軌跡方程用到的是定義法。用定義法求軌跡方程的關(guān)鍵是條件的轉(zhuǎn)化——轉(zhuǎn)化成某一已知曲線的定義條件。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com