【題目】如圖所示的幾何體,關(guān)于其結(jié)構(gòu)特征,下列說法不正確的是( )
A.該幾何體是由兩個(gè)同底的四棱錐組成的幾何體
B.該幾何體有12條棱、6個(gè)頂點(diǎn)
C.該幾何體有8個(gè)面,并且各面均為三角形
D.該幾何體有9個(gè)面,其中一個(gè)面是四邊形,其余均為三角形
【答案】D
【解析】解:根據(jù)幾何體的直觀圖,得
該幾何體是由兩個(gè)同底的四棱錐組成的幾何體,
且有棱MA、MB、MC、MD、AB、BC、CD、DA、NA、NB、NC和ND,共12條;
頂點(diǎn)是M、A、B、C、D和N共6個(gè);
且有面MAB、面MBC、面MCD、面MDA、面NAB、面NBC、面NCD和面NDA共個(gè),且每個(gè)面都是三角形.
所以選項(xiàng)A、B、C正確,選項(xiàng)D錯(cuò)誤.
故選:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解構(gòu)成空間幾何體的基本元素的相關(guān)知識,掌握點(diǎn)、線、面是構(gòu)成幾何體的基本元素.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若直線 l1和l2 是異面直線,l1在平面 α內(nèi),l2在平面β內(nèi),l是平面α與平面β的交線,則下列命題正確的是( )
A.l與l1 , l2都不相交
B.l與l1 , l2都相交
C.l至多與l1 , l2中的一條相交
D.l至少與l1 , l2中的一條相交
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a=2,A=45°,若此三角形有兩解,則b的取值范圍是( )
A.(2,2 )
B.(2,+∞)
C.(﹣∞,2)
D.( , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率.以兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)為頂點(diǎn)的四邊形的周長為8,面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若點(diǎn)為橢圓上一點(diǎn),直線的方程為,求證:直線與橢圓有且只有一個(gè)交點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A.如圖所示, 是園內(nèi)兩條弦和的交點(diǎn),過延長線上一點(diǎn)作圓的切線, 為切點(diǎn),已知求證:
B.已知矩陣 , .求矩陣,使得
C.在平面直角坐標(biāo)系中,直線的參數(shù)方程為 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為,已知直線與曲線相交于兩點(diǎn),求線段的長.
D.已知都是正數(shù),且,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的一塊木料中,棱BC平行于面A′C′.
(Ⅰ)要經(jīng)過面A′C′內(nèi)的一點(diǎn)P和棱BC將木料鋸開,應(yīng)怎樣畫線?
(Ⅱ)所畫的線與平面AC是什么位置關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2 , a4的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=anlog an , 求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點(diǎn)在軸上,且橢圓的焦距為2.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)的直線與橢圓交于兩點(diǎn),過作軸且與橢圓交于另一點(diǎn), 為橢圓的右焦點(diǎn),求證:三點(diǎn)在同一條直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,若acos2 +ccos2 = b,那么a,b,c的關(guān)系是( )
A.a+b=c
B.a+c=2b
C.b+c=2a
D.a=b=c
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com