4.數(shù)列{an}滿足:a1=3,an+1=an-2,則a100等于( 。
A.98B.-195C.-201D.-198

分析 根據(jù)條件求出數(shù)列是等差數(shù)列,得到公差d=-2,結合等差數(shù)列的通項公式進行求解即可.

解答 解:∵an+1=an-2,
∴an+1-an=-2,
∴數(shù)列{an}是公差d=-2的等差數(shù)列,
則a100=a1+99d=3+99×(-2)=-198+3=-195,
故選:B

點評 本題主要考查等差數(shù)列的通項公式的應用,根據(jù)條件判斷數(shù)列是等差數(shù)列是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.過點P(4,8)且被圓x2+y2=25截得的弦長為6的直線方程是(  )
A.3x-4y+20=0B.3x-4y+20=0或x=4C.4x-3y+8=0D.4x-3y+8=0或x=4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在極坐標系中,圓C1:ρ=4cosθ與圓C2:ρ=2sinθ相交于A,B兩點,則|AB|=( 。
A.2B.$\sqrt{2}$C.$\frac{{4\sqrt{5}}}{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知拋物線y2=4x的焦點為F,A、B,為拋物線上兩點,若$\overrightarrow{AF}$=3$\overrightarrow{FB}$,O為坐標原點,則△AOB的面積為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{4\sqrt{3}}}{3}$C.$\frac{{8\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.某車間將10名技工平均分為甲,乙兩組加工某種零件,在單位時間內每個技工加工零件若干,其中合格零件的個數(shù)如表:
1號2號3號4號5號
甲組457910
乙組56789
(1)分別求出甲,乙兩組技工在單位時間內完成合格零件的平均數(shù)及方差,并由此判斷哪組工人的技術水平更好;
(2)質監(jiān)部門從該車間甲,乙兩組中各隨機抽取1名技工,對其加工的零件進行檢測,若兩人完成合格零件個數(shù)之和超過12件,則稱該車間“質量合格”,否則“不合格”.求該車間“質量不合格”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.如圖:若0<a<1,函數(shù)y=ax與y=x+a的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知集合M={x|-2x+1>0},N={x|x<a},若M⊆N,則a的范圍是( 。
A.$a>\frac{1}{2}$B.$a<\frac{1}{2}$C.$a≤\frac{1}{2}$D.$a≥\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知等比數(shù)列{an}中,a2=2,a4=8,數(shù)列{bn}滿足:b1=-1,bn+1=bn+(2n-1).
(1)求數(shù)列{an}和數(shù)列{bn}的通項公式;
(2)若cn=$\frac{{{a_n}{b_n}}}{n}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.函數(shù)y=$\sqrt{2{x}^{2}-3x-2}$的單調遞減區(qū)間為(-∞,-$\frac{1}{2}$].

查看答案和解析>>

同步練習冊答案