在△ABC中,點(diǎn)P是AB邊上的點(diǎn),且AP=4BP,Q是BC的中點(diǎn),AQ與CP的交點(diǎn)為M,若
AM
=k
AQ
,求實(shí)數(shù)k的值.
考點(diǎn):平行向量與共線向量
專題:平面向量及應(yīng)用
分析:C,M,P三點(diǎn)共線,因此存在實(shí)數(shù)λ使得
AM
AP
+(1-λ)
AC
,又
AM
=k
AQ
,
AP
=
4
5
AB
,
AQ
=
1
2
(
AB
+
AC
)
,代入即可得出.
解答: 解:如圖所示,
∵C,M,P三點(diǎn)共線,
∴存在實(shí)數(shù)λ使得
AM
AP
+(1-λ)
AC
,
k
AQ
=λ
AP
+(1-λ)
AC
,
AP
=
4
5
AB
,
AQ
=
1
2
(
AB
+
AC
)
,
k
AQ
=
5
AB
+(1-λ)
AC
=
k
2
AB
+
k
2
AC
,
5
=
k
2
1-λ=
k
2
,
解得k=
8
9
點(diǎn)評(píng):本題考查了向量共線定理、向量的平行四邊形法則、平面向量基本定理,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域是R上的函數(shù)f(x)在[0,+∞)上單調(diào)遞增,若x∈[
1
2
,1]時(shí),不等式f(1+xlog27•log7a)≤f(x-2)恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:log 
1
2
(x+y+4)<log 
1
2
(3x-y-2),若x-y<λ恒成立,則λ的取值范圍是( 。
A、(-∞,10]
B、(-∞,10)
C、[10,+∞)
D、(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在區(qū)間(0,2)中隨機(jī)抽取一個(gè)數(shù),則這個(gè)數(shù)小于1的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知,f(x)=x3-ax-1.
(1)若f(x)在實(shí)數(shù)集上單調(diào)遞增,求a的取值范圍.
(2)是否存在實(shí)數(shù)a,使f(x)在(-1,1)上單調(diào)遞減,若存在,求a的范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|3≤x<5},B={x|4<x<6}.
(1)求A∪B中整數(shù)構(gòu)成的集合M的子集合的個(gè)數(shù);
(2)若函數(shù)f(x)=x+log3x的定義域?yàn)锳∪B,求該函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明下列命題:
(1)
2
不是有理數(shù);
(2)在意的三角形中,至少有一個(gè)角大于或等于60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tan(α+β)=7,tanα•tanβ=
2
3
,則cos(α-β)的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓的外切正十二邊形的面積為12,則該圓的面積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案